Advertisement

Industry 4.0 - Potentials for Creating Smart Products: Empirical Research Results

  • Rainer Schmidt
  • Michael Möhring
  • Ralf-Christian Härting
  • Christopher Reichstein
  • Pascal Neumaier
  • Philip Jozinović
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 208)

Abstract

Industry 4.0 combines the strengths of traditional industries with cutting edge internet technologies. It embraces a set of technologies enabling smart products integrated into intertwined digital and physical processes. Therefore, many companies face the challenge to assess the diversity of developments and concepts summarized under the term industry 4.0. The paper presents the result of a study on the potential of industry 4.0. The use of current technologies like Big Data or cloud-computing are drivers for the individual potential of use of Industry 4.0. Furthermore mass customization as well as the use of idle data and production time improvement are strong influence factors to the potential of Industry 4.0. On the other hand business process complexity has a negative influence.

Keywords

Industry 4.0 Cyber physical systems Empirical research Business information systems Study 

References

  1. 1.
    Blanchet, M., Rinn, T., Thaden, G., Thieulloy, G.: Industry 4.0. The new industrial revolution. How Europe will succeed. Hg V Roland Berg. Strategy Consult. GmbH Münch. Abgerufen Am 1105 2014 Unter (2014). http://www.Rolandberger.Com/med.0403/Pdf
  2. 2.
    Evans, P.C., Annunziata, M.: Industrial internet: pushing the boundaries of minds and machines. Gen. Electr. 21 (2012)Google Scholar
  3. 3.
    Brynjolfsson, E., McAfee, A.: The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton & Company, New York (2014)Google Scholar
  4. 4.
    Brynjolfsson, E., Hofmann, P., Jordan, J.: Cloud computing and electricity: beyond the utility model. Commun. ACM 53, 32–34 (2010)CrossRefGoogle Scholar
  5. 5.
    Dorst, W., EV, B.: Fabrik-und Produktionsprozesse der Industrie 4.0 im Jahr 2020. IM Fachz. Für Inf. Manag. Consult. Nr. 27, 34–37 (2012)Google Scholar
  6. 6.
    Beckert, S.: Empire of Cotton: A Global History. Knopf, New York (2014)Google Scholar
  7. 7.
    Carr, N.G.: The Big Switch: Rewiring the World, from Edison to Google. WW Norton & Company, New York (2008)Google Scholar
  8. 8.
    Kiebitz, F.: Nikola Tesla zum fünfundsiebzigsten Geburtstage. Naturwissenschaften 19, 665–666 (1931)CrossRefGoogle Scholar
  9. 9.
    Siemens, W.: Ueber telegraphische Leitungen und Apparate. Wissenschaftliche und Technische Arbeiten, pp. 15–29. Springer, Heidelberg (1889)Google Scholar
  10. 10.
    Bauernhansl, T.: Industry 4.0: Challenges and limitations in the production. Keynote. ATKearney Fact (2013)Google Scholar
  11. 11.
    Messe, H.: “Industrie 4.0” muss sich erst beweisen - Industrie - Unternehmen – Handelsblatt. http://www.handelsblatt.com/unternehmen/industrie/hannover-messe-industrie-4-0-muss-sich-erst-beweisen/8044930.html
  12. 12.
    Rajkumar, R., Lee, I.: NSF workshop on cyber-physical systems (2006)Google Scholar
  13. 13.
    Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369. IEEE (2008)Google Scholar
  14. 14.
    Ashton, K.: That “internet of things” thing. RFiD J. 22, 97–114 (2009)Google Scholar
  15. 15.
    Cardoso, J., Voigt, K., Winkler, M.: Service engineering for the internet of services. Enterp. Inf. Syst. 13(1), 15–27 (2009)Google Scholar
  16. 16.
    Lee, J., Kao, H.-A., Yang, S.: Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP 16, 3–8 (2014)CrossRefGoogle Scholar
  17. 17.
    Walsh, G., Möhring, M., Koot, C., Schaarschmidt, M.: Preventive product returns management systems-a review and model. In: Proceedings of the 21th European Conference on Information Systems (ECIS), Tel Aviv, Israel (2014)Google Scholar
  18. 18.
    Miche, M., Schreiber, D., Hartmann, M.: Core services for smart products. 3rd European Workshop on Smart Products, pp. 1–4 (2009)Google Scholar
  19. 19.
    Mühlhäuser, M.: Smart products: an introduction. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) Constructing Ambient Intelligence, pp. 158–164. Springer, Berlin Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Nurcan, S., Schmidt, R.: Introduction to the first international workshop on business process management and social software (BPMS2 2008). In: Ardagna, D., Mecella, M., Yang, J., Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C. (eds.) Business Process Management Workshops, pp. 647–648. Springer, Berlin Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52, 21–32 (2011)Google Scholar
  22. 22.
    White, T.: Hadoop: The Definitive Guide. O’Reilly & Associates, Sebastopol (2015)Google Scholar
  23. 23.
    Forman, G.H., Zahorjan, J.: The challenges of mobile computing. Computer 27, 38–47 (1994)CrossRefGoogle Scholar
  24. 24.
    Mell, P., Grance, T.: The NIST Definition of Cloud Computing. http://csrc.nist.gov/groups/SNS/cloud-computing/
  25. 25.
    Schmidt, R., Möhring, M.: Strategic alignment of cloud-based architectures for big data. In: Proceedings of the 17th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW), pp. 136–143. Vancouver, Canada (2013)Google Scholar
  26. 26.
    Schmidt, R.: Industrie 4.0 - revolution oder evolution. Wirtsch. Ostwürtt 2013, 4–7 (2013)Google Scholar
  27. 27.
    Ang, C.L.: Technical planning of factory data communications systems. Comput. Ind. 9, 93–105 (1987)CrossRefGoogle Scholar
  28. 28.
    How big data can improve manufacturing. McKinsey & Company. http://www.mckinsey.com/insights/operations/how_big_data_can_improve_manufacturing
  29. 29.
    Abbott, D.: Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst. Wiley, New York (2014)Google Scholar
  30. 30.
    De Treville, S., Shapiro, R.D., Hameri, A.-P.: From supply chain to demand chain: the role of lead time reduction in improving demand chain performance. J. Oper. Manag. 21, 613–627 (2004)CrossRefGoogle Scholar
  31. 31.
    Bauer, W., Schlund, S., Marrenbach, D., Ganschar, O.: Industrie 4.0 - Volkswirtschaftliches Potenzial für Deutschland. BITKOM / Fraunhofer (2014)Google Scholar
  32. 32.
    Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Groover Jr., M.P.: Automation, Production Systems and Computer-Aided Manufacturing. Prentice Hall PTR, New Jersey (1980)Google Scholar
  34. 34.
    Groover, M.P.: Automation, Production Systems, and Computer-Integrated Manufacturing. Prentice Hall Press, New Jersey (2007)Google Scholar
  35. 35.
    Gilmore, J.H., Pine 2nd, B.J.: The four faces of mass customization. Harv. Bus. Rev. 75, 91–101 (1996)Google Scholar
  36. 36.
    Schmidt, R., Möhring, M., Maier, S., Pietsch, J., Härting, R.-C.: Big data as strategic enabler - insights from central european enterprises. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 50–60. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  37. 37.
    Scheer, A.-W.: Industrie 4.0. Satzweiss.com (2013)Google Scholar
  38. 38.
    Babbie, E.: The practice of social research. Cengage Learning, Boston (2012)Google Scholar
  39. 39.
    Team, T.L.: project: LimeSurvey - the free and open source survey software tool! http://www.limesurvey.org/de/start
  40. 40.
    Wong, K.K.-K.: Partial least squares structural equation modeling (PLS-SEM) techniques using smartPLS. Mark. Bull. 24, 1–32 (2013)Google Scholar
  41. 41.
    Ringle, C.M., Wende, S., Will, A.: SmartPLS 2.0 (beta). Hamburg, Germany (2012)Google Scholar
  42. 42.
    Hooper, D., Coughlan, J., Mullen, M.: Structural equation modelling: guidelines for determining model fit. Articles. 2 (2008)Google Scholar
  43. 43.
    Chin, W.W.: The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 295, 295–336 (1998)Google Scholar
  44. 44.
    Williamson, O.E.: The economics of organization: the transaction cost approach. Am. J. Sociol. 87(3), 548–577 (1981)CrossRefGoogle Scholar
  45. 45.
    Wigand, R.T., Picot, A., Reichwald, R.: Information, Organization and Management: Expanding Markets and Corporate Boundaries. Wiley, Chichester (1997)Google Scholar
  46. 46.
    Shulman, J.D., Coughlan, A.T., Savaskan, R.C.: Optimal reverse channel structure for consumer product returns. Mark. Sci. 29, 1071–1085 (2010)CrossRefGoogle Scholar
  47. 47.
    Christensen, C.: The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail. Harvard Business Review Press, Boston (2013)Google Scholar
  48. 48.
    Santos, J.R.A.: Cronbach’s alpha: a tool for assessing the reliability of scales. J. Ext. 37, 1–5 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rainer Schmidt
    • 2
  • Michael Möhring
    • 1
  • Ralf-Christian Härting
    • 1
  • Christopher Reichstein
    • 1
  • Pascal Neumaier
    • 1
  • Philip Jozinović
    • 1
  1. 1.Business Information SystemsAalen UniversityAalenGermany
  2. 2.Business Information SystemsMunich University of Applied SciencesMunichGermany

Personalised recommendations