Skip to main content

Development of Metal Oxide Gas Sensors for Environmental Security Monitoring: An Overview

  • Conference paper
  • First Online:
Book cover Robotic Welding, Intelligence and Automation (RWIA 2014)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 363))

  • 2913 Accesses

Abstract

MOX (metal oxide) sensors for gas sensing, such as toxic as well as flammable, which is harmful to human health, show a variety of performances on diverse substrates. Among state of the art of various substrates, plastic combination with a hotplate indicates the lowest power consumption in gas monitoring. Meanwhile, SnO2-based sensors are good at sensing volatile organic compounds (VOCs) as well as reducing/oxidizing gases. As one of the key issues in sensing is the effect of humidity and temperature, some researchers find that the variation in the sensing property of SnO2-based CO gas sensors with respect to temperature and humidity is effectively suppressed by the surface modifications with platinum. In addition, compared with SnO2 film introduction with oxygen, SnO2 doped with Pd/In can exhibit a superior sensitivity to CO concentration as low as 1 ppm. Researches also indicate that the La2O3 doped to SnO2 shows higher response among most sensors but lower than PdO loaded SnO2 accordingly. Moreover, the influence of time drift and replacement of sensors implemented after fabrication should be decreased by recalibration and compensation. Therefore, multi-function sensor with chemical element, oxide or combination doped in SnO2 layer performing high sensitivity and thermal stability for long term stability is in expectation in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boeglin ML, Wessels D, Henshel D (2006) An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties. Environ Res 100:242–254

    Article  Google Scholar 

  2. Sawaguchi N, Shin W, Izu N, Matsubara I, Murayama N (2006) Enhanced hydrogen selectivity of thermoelectric gas sensor by modification of platinum catalyst surface. Mater Lett 60:313–316

    Article  MATH  Google Scholar 

  3. Kim H-R, Haensch A, Kim I-D, Barsan N, Weimar U, Lee J-H (2011) Role of NiO doping in reducing the humidity impact on the performance of SnO2-based gas sensors: synthesis strategies, phenomenological and spectroscopic studies. Adv Funct Mater 21:4456–4463

    Article  Google Scholar 

  4. Kim H-R, Choi K-I, Kim K-M, Kim I-D, Cao G, Lee J-H (2010) Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem Commun 46:5061–5063

    Article  Google Scholar 

  5. Romain AC, André P, Nicolas J (2002) Three years experiment with the same tin oxide sensor arrays for the identification of malodorous sources in the environment. Sens Actuators B 84(2–3):271–277

    Article  Google Scholar 

  6. Korotcenkov G, Cho BK (2011) Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens Actuators B 156:527–538

    Article  Google Scholar 

  7. Llobet E (2013) Gas sensors using carbon nanomaterials: a review. Sens Actuators B 179:32–45

    Article  Google Scholar 

  8. Gardon M, Guilemany JM (2013) A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors. Sci: Mater Electron 24:1410–1421

    Google Scholar 

  9. Hunter GW, Neudeck PG, Okojie RS, Beheim GM, Powell JA, Chen LY (2003) An overview of high-temperature electronics and sensor development at NASA Glenn Research Center. J Turbo Mach 125:658–664

    Article  Google Scholar 

  10. Courbat J, Brianda D, Opreab A et al (2009) Procedia Chem 1:597–600

    Article  Google Scholar 

  11. Galdikas A, Kancleris Ž, Senulien e D, Šetkus A (2003) Influence of heterogeneous reaction rate on response kinetics of metal oxide gas sensors: application to the recognition of an odour. Sens Actuators B 95:244–251

    Article  Google Scholar 

  12. Spetz AL, Savage S (2004) Advances in SiC field effect gas sensors. In: Choyke WJ, Matsunami H, Pensl G (eds) Silicon carbide recent major advances. Springer, Berlin, pp 870–896

    Google Scholar 

  13. Hunter GW, Neudeck PG, Gray M, Androjna D, Chen LY, Hoffman RW Jr, Liu CC, Wu QH (2000) SiC-based gas sensor development. Mater Sci Forum 338–342:1439–1442

    Article  Google Scholar 

  14. Durrani SMA (2006) The influence of electrode metals and its configuration on the response of tin oxide thin film CO sensor. Talanta 68:1732–1735

    Article  Google Scholar 

  15. Courbat J, Canonica M, Teyssieux D, Briand D, de Rooij NF (2011) Design and fabrication of micro-hotplates made on polyimide foil: electrothermal simulation and characterization to achieve power consumptions in the low mw range. J Micromech Microeng 21:015014

    Article  Google Scholar 

  16. Courbat J, Briand D, de Rooij NF (2008) Reliability improvement of suspended platinum-based micro-heating elements. Sens Actuators A 142:284–291

    Article  Google Scholar 

  17. Wright NG, Horsfall AB, Vassilevski K (2008) Prospects for SiC electronics and sensors. Mater Today 11:16–21

    Article  Google Scholar 

  18. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106

    Article  Google Scholar 

  19. Phawachalotorn C, Sanguanruang O, Ishihara T (2012) Highly selective amperometric sensors for carbon monoxide detection in exhaust gas. Sens Actuators B 161:635–640

    Article  Google Scholar 

  20. Courbat J, Briand D, Yue L, Raible S, de Rooij NF (2012) Drop-coated metal-oxide gas sensor on polyimide foil with reduced power consumption for wireless applications. Sens Actuators B 161:862–868

    Article  Google Scholar 

  21. Morimitsu M, Ozaki Y, Suzuki S, Matsunaga M (2000) Effects of surface modification with platinum and ruthenium on temperature and humidity dependence of SnO2-based CO gas sensors. Sens Actuators B 67:184–188

    Article  Google Scholar 

  22. Al-Kuhaili MF, Durrani SMA, Khawaja EE (2004) J Phys D Appl Phys 37:1254

    Article  Google Scholar 

  23. Durrani SMA, Khawaja EE, Al-Kuhaili MF (2005) CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation. Talanta 65:1162–1167

    Article  Google Scholar 

  24. Zhang T, Liu L, Qi Q, Li S, Lu G (2009) Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection. Sens Actuators B 139:287–291

    Article  Google Scholar 

  25. Bahrami B, Khodadadi A, Kazemeini M, Mortazavi Y (2008) Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane. Sens Actuators B 133:352–356

    Article  Google Scholar 

  26. Wang C-T, Chen H-Y, Chen Y-C (2013) Gold/vanadium–tin oxide nanocomposites prepared by co-precipitation method for carbon monoxide gas sensors. Sens Actuators B 176:945–951

    Article  Google Scholar 

  27. Choi JY, Oh TS (2013) CO sensitivity of La2O3-doped SnO2 thick film gas sensor, Thin Solid Films 547:230-234

    Google Scholar 

  28. Yuasa M, Masaki T, Kida T, Shimanoe K, Yamazoe N (2009) Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sens Actuators B 136:99–104

    Article  Google Scholar 

  29. Vallejos S, Umek P, Stoycheva T et al (2013) Single-step deposition of Au- and Pt-nanoparticle functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays. Adv Funct Mater 23:1313–1322

    Article  Google Scholar 

  30. Chevallier L, Traversa E, Di Bartolomeo E (2010) Propene detection at high temperatures using highly sensitive non-nernstian electrochemical sensors based on Nb and Ta oxides. J Electrochem Soc 157(11):J386–J391

    Article  Google Scholar 

  31. Wang XR, Lizier JT, Obst O, Prokopenko M, Wang P (2008) Spatiotemporal anomaly detection in gas monitoring sensor networks. Lect Note Comput Sci 4913:90–105

    Article  Google Scholar 

  32. Li M, Liu Y, Chen L (2007) Non-threshold based event detection for 3D environment monitoring in sensor networks. In: Proceedings of the 27th international conference on distributed computing systems, ICDCS’07. Toronto, 25–29 June 2007, p 9

    Google Scholar 

  33. CitiSense. Available online: https://sosa.ucsd.Edu/confluence/display/CitiSensePublic/CitiSense (accessed on 3 June 2013)

  34. Air quality egg. Available online: http://www.Kickstarter.com/projects/edborden/air-quality-egg (accessed on 3 June 2013)

  35. Lilienthal A, Trincavelli M, Schaffernicht E (2013) It’s always smelly around here! Modeling the spatial distribution of gas detection events with based grid maps. Accepted for publication in Proceedings of international symposium on olfaction and electronic nose 2013, ISOEN’13, Daegu, 2–5 July 2013

    Google Scholar 

  36. Pashami S, Lilienthal AJ, Schaffernicht E, Trincavelli M (2013) Trend estimation and change detection in the response of MOX gas sensors sensors 13(6):7323–7344

    Google Scholar 

  37. Min Y (2003) Properties and sensor performance of zinc oxide thin films. PhD in Electronic, Photonic and Magnetic Materials, Massachusetts Institute of Technology

    Google Scholar 

  38. Simakov VV, Yakusheva OV, Grebennikov AI, Kisin VV (2005) Current-voltage characteristics of thin-film gas sensor structures based on tin dioxide. Tech Phys Lett 31:339–340

    Article  Google Scholar 

  39. Varpula A, Novikov S, Sinkkonen J, Utriainen M (2008) Bias dependent sensitivity in metal-oxide gas sensors. Sens Actuators B 131:134–142

    Article  Google Scholar 

  40. Wang D, Agrawal DP, Toruksa W, Chaiwatpongsakorn C, Lu M, Keener TC (2010) Monitoring ambient air quality with carbon monoxide wireless network. Commun ACM 53(5):138–141

    Article  MATH  Google Scholar 

  41. Jelicic V, Magno M, Brunelli D, Paci G, Benini L (2013) Contextadaptive multimodal wireless sensor network for energy-efficient gas monitoring. IEEE Sens J 13(1):328–338

    Article  Google Scholar 

  42. Bhattacharyya P, Verma D, Banerjee D (2010) Microcontroller based power efficient signal conditioning unit for detection of a single gas using mems based sensor. Int J Smart Sens Intell Syst 3(4)

    Google Scholar 

  43. Somov A, Baranov A, SavkinA, Ivanov M, Calliari L, Passerone R, Karpov E, Suchkov A (2012) Energy-aware gas sensing using wireless sensor networks. In: Wireless sensor networks, 9th European Conference, EWSN 2012, ser. Lecture Notes in Computer Science, vol 7158. Springer, Heidelberg, pp 245–260

    Google Scholar 

  44. Rossi M, Brunelli D (2013) Analyzing the transient response of MOX gas sensors to improve the lifetime of distributed sensing systems. In: IEEE international workshop on advances in sensors and interfaces, pp 211–216

    Google Scholar 

  45. Caione C, Brunelli D, Benini L (2012) Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans Industr Inf 8(1):30–40

    Article  Google Scholar 

  46. Bissi L, Cicioni M, Placidi P, Zampolli S, Elmi I, Scorzoni A (2011) A programmable interface circuit for an ultralow power gas sensor. IEEE Trans Instrum Meas (99):1–8. doi:10.1109/TIM.2010.2049182

  47. Rastrello F, Placidi P, Bissi L, Scorzoni A, Cozzani E, Elmi I, Zampolli S, Cardinali GC (2010) Characterization of the thermal transients of an ultra low power micromachined sensor. In: Proceedings of the IEEE Int. Instrum. Meas. Technol. Conf., Austin, TX, May 3–6, 2010, pp 1591–1595

    Google Scholar 

  48. Rastrello F, Placidi P, Scorzoni A (2011) A system for the dynamic control and thermal characterization of ultra low power gas sensors. IEEE Trans Instrum Meas 60(5):1876–1883

    Article  Google Scholar 

  49. Marco S, Gutierrez-Galvez A (2012) Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sens J 12(11):3189–3214

    Article  Google Scholar 

  50. Romain AC, Nicolas J (2010) Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens Actuators B 146:502–506

    Article  Google Scholar 

  51. Hajmirzaheydarali M, Ghafarinia V (2011) A smart gas sensor insensitive to humidity and temperature variations. Mater Sci Eng 17

    Google Scholar 

  52. Sohn JH, Atzeni M, Zeller L, Pioggia G (2008) Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares. Sens Actuators B 131(1):230–235

    Article  Google Scholar 

  53. Mumyakmaz B, Ozmen A, Ebeoglu MA, Tasaltin C, Gurol I (2010) A study on the development of a compensation method for humidity effect in QCM sensor responses. Sens Actuators B 147(1):277–282

    Article  Google Scholar 

  54. Tian F, Pan L, Xiao B, Yang SX, Guo J, Feng J, Kadri C (2012) Study of the temperature and humidity dependence of a metal oxide semiconductor sensor array. J Comput Inf Syst 8(11):4495–4503

    Google Scholar 

  55. Abidin MZ, Asmat A, Hamidon MN (2013) Identification of initial drift in semiconductor gas sensors caused by temperature variation. In: IEEE 9th international colloquium on signal processing and its applications, pp 285–288

    Google Scholar 

  56. Koretcenkov G, Cho BK (2011) Instability of metal oxide based conductometric gas sensors and approaches to stability improvement (short survey). Sens Actuators B 156(2):527–538

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Zhang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, XZ., Yu, J. (2015). Development of Metal Oxide Gas Sensors for Environmental Security Monitoring: An Overview. In: Tarn, TJ., Chen, SB., Chen, XQ. (eds) Robotic Welding, Intelligence and Automation. RWIA 2014. Advances in Intelligent Systems and Computing, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-319-18997-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18997-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18996-3

  • Online ISBN: 978-3-319-18997-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics