Collaborative Information Seeking Around Big Data

Part of the Computer Supported Cooperative Work book series (CSCW)

Abstract

Big data analytics poses many socio-computational problems with respect to collaborative information seeking. While collaboration presents a way to alleviate the data deluge, research into this area is only relatively recent. The diverse range of skills and knowledge among a data analytics team presents an array of problems, including a wide spectrum of domain expertise, lack of shared understanding between roles, and challenges with the physical and computational aspects of multiple people seeking information within the multiple systems required for big data analytics. This chapter discusses recent research on collaborative big data analytics to discuss present progress, lessons learned, and gaps to be filled with future research. It proposes that the framework of the transactive memory system is a viable way to view people working around big data, as it supports collaborative sensemaking and the production of common ground among heterogeneous teams.

Keywords

Collaboration Information seeking Big data Visualization 

References

  1. Ammari A, Dimitrova V, Lau L, Tzagarakis M (2011). Augmented collaborative spaces for collective sense making: The dicode approach. In: Paramythis A, Lau L, Demetriadis S, Tzagarakis M, Kleanthous S (eds.) The international workshop on adaptive support for team collaboration, pp 3–13. http://eprints.whiterose.ac.uk/43182/
  2. Bødker S (1995) Applying activity theory to video analysis: how to make sense of video data in human-computer interaction. In: Context and consciousness. Massachusetts Institute of Technology, Cambridge, MA, pp 147–174Google Scholar
  3. Boyd D, Crawford K (2012) Critical questions for big data. Inf Commun Soc 15(5):662–679. doi:10.1080/1369118X.2012.678878 CrossRefGoogle Scholar
  4. Byström K, Hansen P (2005) Conceptual framework for tasks in information studies. J Am Soc Inf Sci Technol 56(10):1050–1061. doi:10.1002/asi.20197 CrossRefGoogle Scholar
  5. Callahan SP, Freire J, Santos E, Scheidegger CE, Silva CT, Vo HT (2006) VisTrails: Visualization meets data management In: Proceedings of the 2006 ACM SIGMOD international conference on management of data – SIGMOD’06. ACM Press, New York, pp 745–747. doi:10.1145/1142473.1142574
  6. Carroll JM, Neale DC, Isenhour PL, Rosson MB, McCrickard DS (2003) Notification and awareness: synchronizing task-oriented collaborative activity. Int J Hum Comput Stud 58(5):605–632. doi:10.1016/S1071-5819(03)00024-7 CrossRefGoogle Scholar
  7. Clark HH, Brennan SE (1991) Grounding in communication. In: Resnick LB, Levine J, Teasley SD (eds) Perspectives on socially shared cognition. American Psychological Association, Washington, DC, pp 127–149CrossRefGoogle Scholar
  8. Cohen J, Dolan B, Dunlap M, Hellerstein JM, Welton C (2009) MAD skills: new analysis practices for big data. Proc VLDB Endowment 2(2):1481–1492. doi:10.14778/1687553.1687576
  9. Convertino G, Mentis HM, Slavkovic A, Rosson MB, Carroll JM (2011) Supporting common ground and awareness in emergency management planning. ACM T Comput-Hum Int 18(4):1–34. doi:10.1145/2063231.2063236 Google Scholar
  10. Cooke NJ, Gorman JC, Myers CW, Duran JL (2013) Interactive team cognition. Cognit Sci 37(2):255–285. doi:10.1111/cogs.12009 CrossRefGoogle Scholar
  11. De Roure D, Goble C, Stevens R (2009) The design and realisation of the myExperiment virtual research environment for social sharing of workflows. Future Gener Comp Sy 25(5):561–567. doi:10.1016/j.future.2008.06.010 CrossRefGoogle Scholar
  12. Evans BM, Kairam S, Pirolli P (2010) Do your friends make you smarter? An analysis of social strategies in online information seeking. Inf Process Manag 46(6):679–692. doi:10.1016/j.ipm.2009.12.001 CrossRefGoogle Scholar
  13. Fisher D, DeLine R, Czerwinski M, Drucker S (2012a) Interactions with big data analytics. Interactions 19(3):50–59. doi:10.1145/2168931.2168943 CrossRefGoogle Scholar
  14. Fisher D, Popov I, Drucker S, Schraefel MC (2012b) Trust me, I’m partially right: Incremental visualization lets analysts explore large datasets faster. In: Proceedings of the 2012 ACM annual conference on human factors in computing systems – CHI’12. ACM Press, New York, pp 1673–1682. doi:10.1145/2207676.2208294
  15. Freire J, Silva T, Callahan SP, Santos E, Scheidegger CE, Vo HT (2006) Managing rapidly-evolving scientific workflows. Lect Notes Comput Sci 4145:10–18CrossRefGoogle Scholar
  16. Golovchinsky G, Pickens J, Back M (2008), A taxonomy of collaboration in online information seeking. In: Proceedings of the 1st international workshop on collaborative information retrieval. Available online at http://www.fxpal.com/?p=abstract&abstractID=454
  17. Gunawardena CN, Lowe CA, Anderson T (1997) Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. J Educ Comput Res 17(4):397–431CrossRefGoogle Scholar
  18. Harper R, Sellen A (1995) Collaborative tools and the practicalities of professional work at the international monetary fund. In: Proceedings of the SIGCHI conference on human factors in computing systems CHI’95. ACM Press, pp 122–129. doi:10.1145/223904.223920
  19. Heer J, Agrawala M (2008) Design considerations for collaborative visual analytics. Inf Vis 7(1):49–62. doi:10.1057/palgrave.ivs.9500167 CrossRefGoogle Scholar
  20. Heer J, Shneiderman B (2012) Interactive dynamics for visual analysis: a taxonomy of tools that support the fluent and flexible use of visualizations. Queue 10(2):1–26. doi:10.1145/2133416.2146416 CrossRefGoogle Scholar
  21. Heer J, Viégas FB, Wattenberg M (2009) Voyagers and voyeurs: supporting asynchronous collaborative visualization. Commun ACM 52(1):87–97. doi:10.1145/1435417.1435439 CrossRefGoogle Scholar
  22. Hollan J, Hutchins E, Kirsh D (2000) Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans Comput-Hum Int 7(2):174–196. doi:10.1145/353485.353487 CrossRefGoogle Scholar
  23. Hollingshead AB (1998) Communication, learning, and retrieval in transactive memory systems. J Exp Soc Psychol 442(34):423–442CrossRefGoogle Scholar
  24. Lewis K (2003) Measuring transactive memory systems in the field: scale development and validation. J Appl Psychol 88(4):587–604. doi:10.1037/0021-9010.88.4.587 CrossRefGoogle Scholar
  25. Liu Z, Jiang B, Heer J (2013) imMens: real-time visual querying of big data. Comput Graphic Forum 32(3 pt4):421–430. doi:10.1111/cgf.12129 CrossRefGoogle Scholar
  26. MacMillan J, Entin EE, Serfaty D (2004) Communication overhead: the hidden cost of team cognition. In: Salas E, Fiore SM (eds) Team cognition: understanding the factors that drive process and performance. APA Books, Washington, DC, pp 61–83CrossRefGoogle Scholar
  27. McNeese MD,Rentsch JR (1998) Identifying the social and cognitive requirements of teamwork using collaborative task analysis. In: RTO HFM symposium on collaborative crew performance in complex operational systems, Edinburgh, pp 16.1–16.8Google Scholar
  28. Mohammed S, Dumville BC (2001) Team mental models in a team knowledge framework: expanding theory and measurement across disciplinary boundaries. J Organ Behav 22(2):89–106. doi:10.1002/job.86 CrossRefGoogle Scholar
  29. Paul SA, Reddy MC (2010) Understanding together. In: Proceedings of the 2010 ACM conference on computer supported cooperative work – CSCW’10. ACM Press, New York, pp 321–330, doi:10.1145/1718918.1718976
  30. Pinelle D, Gutwin C, Greenberg S (2003) Task analysis for groupware usability evaluation. ACM Trans CompuT-Hum Int 10(4):281–311. doi:10.1145/966930.966932 CrossRefGoogle Scholar
  31. Pirolli P, Card S (2005) The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In: Proceedings of the international conference on intelligence analysis. MITRE, McLeanGoogle Scholar
  32. Poltrock S, Grudin J, Dumais S, Fidel R, Bruce H, Pejtersen AM (2003) Information seeking and sharing in design teams. In Proceedings of the 2003 international ACM SIGGROUP conference on supporting group work – GROUP’03. ACM Press, New York, pp 239–247. doi:10.1145/958160.958198
  33. Sanford A, Anderson AH, Mullin J (2004) Audio channel constraints in video-mediated communication. Interact Comput 16(6):1069–1094. doi:10.1016/j.intcom.2004.06.015 CrossRefGoogle Scholar
  34. Shah C, Capra R, Hansen P (2014) Collaborative information seeking. Computer 47(3):22–25CrossRefGoogle Scholar
  35. Shah C, Pickens J, Golovchinsky G (2010) Role-based results redistribution for collaborative information retrieval. Inform Process Manag 46(6):773–781. doi:10.1016/j.ipm.2009.10.002 CrossRefGoogle Scholar
  36. Shneiderman B (1997) Direct manipulation for comprehensible, predictable and controllable user interfaces. In: Proceedings of the 2nd international conference on intelligent user interfaces, pp 33–39Google Scholar
  37. Shneiderman B (2008) Extreme visualization: squeezing a billion records into a million pixels. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data – SIGMOD’08 ACM Press, New York, pp 3–12,doi:10.1145/1376616.1376618
  38. Sukumar SR, Ferrell RK (2013) “Big Data” collaboration: exploring, recording, and sharing enterprise knowledge. Inform Serv Use 33:257–270. doi:10.3233/ISU-130712 Google Scholar
  39. Sukumar SR, Olama MM, McNair AW, Nutaro JJ (2013) Concept of operations for knowledge discovery from big data across enterprise data warehouses. In: Broome BD, Hall DL, Llinas J (eds) Proceedings of SPIE. SPIE, Bellingham, pp 460–468. doi:10.1117/12.2016321 Google Scholar
  40. Tchoua R, Choi J, Klasky S, Liu Q, Logan J, Moreland K, … Wolf M (2013) ADIOS visualization schema: A first step towards improving interdisciplinary collaboration in high performance computing. In : 2013 IEEE 9th international conference on e-Science. IEEE, pp 27–34. doi:10.1109/eScience.2013.24
  41. Thilakanathan D, Calvo R, Chen S, Nepal S (2013) Secure and controlled sharing of data in distributed computing. In: 2013 IEEE 16th international conference on computational science and engineering, IEEE, pp 825–832. doi:10.1109/CSE.2013.125
  42. Vickery R, Martin J, Fowler J, Moorehead R, Dandass Y, Atkinson T, … Clarke J, (2007) Web-based high performance remote visualization. In: 2007 DoD high performance computing modernization program users group conference,IEEE, pp 364–369. doi:10.1109/HPCMP-UGC.2007.82
  43. Viégas FB, Wattenberg M, Ham FV, Kriss J, Mckeon M (2007) Many eyes: a site for visualization at internet scale. IEEE Trans Vis Comput Graph 13(6):1121–1128CrossRefGoogle Scholar
  44. Wattenberg M, Kriss J (2006) Designing for social data analysis. IEEE Trans Vis Comput Graph 12(4):549–557. doi:10.1109/TVCG.2006.65 CrossRefGoogle Scholar
  45. Willett W, Heer J, Hellerstein JM, Agrawala M (2011) CommentSpace: structured support for collaborative visual analysis. In: Proceedings of the 2011 ACM annual conference on human factors in computing systems – CHI’11, pp 3131–3140Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The MITRE CorporationBedfordUSA

Personalised recommendations