Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 554 Accesses

Abstract

Since the dawn of experimental gravitational physics, the solar system has been one of its key testing grounds. The observation of anomalies in the trajectory of solar system bodies relative to theoretical prediction has often led to theoretical breakthroughs. Perhaps the best known example is the perihelion precession of Mercury. At first attributed to systematic errors, then turned into a major problem for Newtonian gravity and became one of the key experimental evidence supporting General Relativity (GR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Bertolami, J. Páramos, The Experimental Status of Special and General Relativity. Springer Handbook of Spacetime (Springer, Berlin, 2014), pp. 463–483

    Google Scholar 

  2. J. Anderson, P. Laing, E. Lau, A. Liu, M. Nieto, S.G. Turyshev, Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81(14), 2858–2861 (1998). doi:10.1103/PhysRevLett.81.2858

    Article  ADS  Google Scholar 

  3. J. Anderson, P. Laing, E. Lau, A. Liu, M. Nieto, S.G. Turyshev, Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D 65(8), 082004 (2002). doi:10.1103/PhysRevD.65.082004

    Article  ADS  Google Scholar 

  4. S.G. Turyshev, V.T. Toth, The Pioneer anomaly. Living Rev. Relativ. 13, 4 (2010). doi:10.12942/lrr-2010-4

    Article  ADS  Google Scholar 

  5. S.G. Turyshev, V.T. Toth, J. Ellis, C.B. Markwardt, Support for temporally varying behavior of the Pioneer anomaly from the extended Pioneer 10 and 11 doppler data sets. Phys. Rev. Lett. 107(8) (2011). doi:10.1103/PhysRevLett.107.081103

  6. O. Bertolami, F. Francisco, P.J.S. Gil, J. Páramos, Estimating radiative momentum transfer through a thermal analysis of the Pioneer anomaly. Space Sci. Rev. 151(1–3), 75–91 (2010). doi:10.1007/s11214-009-9589-3

    Article  ADS  Google Scholar 

  7. F. Francisco, O. Bertolami, P.J.S. Gil, J. Páramos, Modelling the reflective thermal contribution to the acceleration of the Pioneer spacecraft. Phys. Lett. B 711(5), 337–346 (2012). doi:10.1016/j.physletb.2012.04.034

    Article  ADS  Google Scholar 

  8. O. Bertolami, F. Francisco, P.J.S. Gil, J. Páramos, Thermal analysis of the Pioneer anomaly: a method to estimate radiative momentum transfer. Phys. Rev. D 78(10), 103001 (2008). doi:10.1103/PhysRevD.78.103001

    Article  ADS  Google Scholar 

  9. B. Bertotti, L. Iess, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft. Nature 425(6956), 374–376 (2003). doi:10.1038/nature01997

    Article  ADS  Google Scholar 

  10. C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relativ. 9 (2006). doi:10.12942/lrr-2006-3

  11. L. Iess, G. Giampieri, J.D. Anderson, B. Bertotti, Doppler measurement of the solar gravitational deflection. Class. Quantum Gravity 16(5), 1487–1502 (1999). doi:10.1088/0264-9381/16/5/303

    Article  ADS  Google Scholar 

  12. O. Bertolami, F. Francisco, P.J.S. Gil, J. Páramos, Modeling the nongravitational acceleration during Cassini’s gravitation experiments. Phys. Rev. D 90(4), 042004 (2014). doi:10.1103/PhysRevD.90.042004

    Article  ADS  Google Scholar 

  13. B. Christophe, L.J. Spilker, J. Anderson, N. André, S.W. Asmar, J. Aurnou, D. Banfield, A. Barucci, O. Bertolami, R. Bingham, P. Brown, B. Cecconi, J.M. Courty, H. Dittus, L.N. Fletcher, B. Foulon, F. Francisco, P.J.S. Gil, K.H. Glassmeier, W. Grundy, C. Hansen, J. Helbert, R. Helled, H. Hussmann, B. Lamine, C. Lämmerzahl, L. Lamy, R. Lehoucq, B. Lenoir, A. Levy, G. Orton, J. Páramos, J. Poncy, F. Postberg, S.V. Progrebenko, K.R. Reh, S. Reynaud, C. Robert, E. Samain, J. Saur, K.M. Sayanagi, N. Schmitz, H. Selig, F. Sohl, T.R. Spilker, R. Srama, K. Stephan, P. Touboul, P. Wolf, OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt. Exp. Astron. 34(2), 203–242 (2012). doi:10.1007/s10686-012-9309-y

    Article  ADS  Google Scholar 

  14. J. Anderson, J. Campbell, J. Ekelund, J. Ellis, J. Jordan, Anomalous orbital-energy changes observed during spacecraft flybys of earth. Phys. Rev. Lett. 100(9), 091102 (2008). doi:10.1103/PhysRevLett.100.091102

    Article  ADS  Google Scholar 

  15. S.G. Turyshev, V. Toth, The puzzle of the flyby anomaly. Space Sci. Rev. 168(1–4), 169–174 (2009). doi:10.1007/s11214-009-9571-0

    Article  ADS  Google Scholar 

  16. O. Bertolami, F. Francisco, P.J.S. Gil, J. Páramos, Testing the flyby anomaly with the GNSS constellation. Int. J. Mod. Phys. D 21, 1250035 (2012). doi:10.1142/S0218271812500356

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Francisco .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Francisco, F. (2015). Introduction. In: Trajectory Anomalies in Interplanetary Spacecraft. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18980-2_1

Download citation

Publish with us

Policies and ethics