Skip to main content

Confocal Scanning Laser Ophthalmoscopy

  • Chapter
Glaucoma Imaging
  • 1437 Accesses

Abstract

The Heidelberg retina tomograph (HRT) is a confocal laser scanning system designed to acquire and analyse three-dimensional images of the posterior segment of the eye. The topography is presented as a colour-coded map, with darker colours representing more superficial structures and lighter colours representing deeper structures. Clinical evaluation of the ONH is mainly based on HRT parameters and their formulas such as the Moorfields regression analysis (MRA) and the various linear discriminant functions.

No commercially available imaging device is able to discriminate perfectly between normal and glaucomatous eyes – there is an overlap in measurements between the two; however, when an eye with glaucoma will be classified as ‘borderline’ or ‘outside normal limits’, the final decision as to whether an eye is glaucomatous or not is a clinical judgement, based on all available clinical data.

A potentially important clinical application of the HRT is the detection of glaucomatous progression from a baseline image. Topographic change analysis (TCA) is a statistical method to compare the topographic height values in discrete areas of the image. The analysis requires the mean of a set of three topographic images at each point in time, so that each pixel in the image will have three height values. The key determinant in the TCA is the variability in topographic height values within the superpixel over the two sets of three images for each comparison (three at baseline, three at follow-up).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kruse FE, Burk RO, Volcker HE, Zinser G, Harbarth U (1989) 3-dimensional biomorphometry of the papilla using a laser tomography scanning procedure–initial experiences with pathologic papillary findings. Fortschr Ophthalmol 86:710–713

    CAS  PubMed  Google Scholar 

  2. Burk RO, Rohrschneider K, Noack H, Volcker HE (1991) Volumetric analysis of the optic papilla using laser scanning tomography. Parameter definition and comparison of glaucoma and control papilla. Klin Monatsbl Augenheilkd 198:522–529

    Article  CAS  PubMed  Google Scholar 

  3. Sihota R, Gulati V, Agarwal HC et al (2002) Variables affecting test-retest variability of Heidelberg Retina Tomograph II stereometric parameters. J Glaucoma 11:321–328

    Article  PubMed  Google Scholar 

  4. Yücel YH, Gupta N, Kalichman M, Mizisin AP, Hare W, de Souza Lima M, Zangwill L, Weinreb RN (1998) Relationship of optic disc topography to optic nerve fiber number in glaucoma. Arch Ophthalmol 116:493–497

    Article  PubMed  Google Scholar 

  5. Burk RO, Vihanninjoki K, Bartke T, Tuulonen A, Airaksinen PJ, Volcker HE, Konig JM (2000) Development of the standard reference plane for the Heidelberg retina tomograph. Graefes Arch Clin Exp Ophthalmol 238:375–384

    Article  CAS  PubMed  Google Scholar 

  6. Chen E, Gedda U, Landau I (2001) Thinning of the papillomacular bundle in the glaucomatous eye and its influence on the reference plane of the Heidelberg retinal tomography. J Glaucoma 10:386–389

    Article  CAS  PubMed  Google Scholar 

  7. Tan JC, Garway-Heath DF, Fitzke FW, Hitchings RA (2003) Reasons for rim area variability in scanning laser tomography. Invest Ophthalmol Vis Sci 44:1126–1131

    Article  PubMed  Google Scholar 

  8. Tan JC, Hitchings RA (2003) Reference plane definition and reproducibility in optic nerve head images. Invest Ophthalmol Vis Sci 44:1132–1137

    Article  PubMed  Google Scholar 

  9. Iester M, Mariotti V, Lanza F, Calabria G (2009) The effect of contour line position on optic nerve head analysis by Heidelberg Retina Tomograph. Eur J Ophthalmol 19:942–948

    PubMed  Google Scholar 

  10. Wollstein G, Garway-Heath DF, Hitchings RA (1998) Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 105:1557–1563

    Article  CAS  PubMed  Google Scholar 

  11. Garway-Heath DF, Wollstein G, Hitchings RA (1997) Aging changes of the optic nerve head in relation to open angle glaucoma. Br J Ophthalmol 81:840–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zangwill LM, Weinreb RN, Beiser JA et al (2005) Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch Ophthalmol 123(9):1188–1197

    Article  PubMed  Google Scholar 

  13. Mikelberg FS, Parfitt CM, Swindale NV, Graham SL, Drance SM, Gosine R (1995) Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss. J Glaucoma 4:242–247

    Article  CAS  PubMed  Google Scholar 

  14. Iester M, Mikelberg FS, Drance SM (1997) The effect of optic disc size diagnostic precision with the Heidelberg Retina Tomograph. Ophthalmology 104:545–548

    Article  CAS  PubMed  Google Scholar 

  15. Burk ROW, Noack H, Rohrschneider K, Volcker HE (1999) Prediction of glaucomatous visual field defects by reference plane independent three-dimensional optic nerve head parameters. In: Wall M, Wild JM (eds) Perimetry update 1998/1999: Proceedings of the XIII International Perimetric Society Meeting, Gardone Riviera (BS), 1998. The Hangue, Kugler, The Netherlands, pp 463–474

    Google Scholar 

  16. Iester M, Parfitt CM, Swindale NV, Mikelberg FS (1997) Sector-based analysis of Heidelberg Retina Tomograph (HRT) parameters in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 38(Suppl):S835

    Google Scholar 

  17. Iester M, Jonas JB, Mardin CY, Budde WM (2000) Discriminant analysis models for early detection of glaucomatous optic disc changes. Br J Ophthalmol 84:464–468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mardin CY, Horn FK, Jonas JB, Budde WM (1999) Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthalmol 83:299–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Iester M, Oddone F, Prato M, Centofanti M, Fogagnolo P, Rossetti L, Vaccarezza V, Manni G, Ferreras A (2013) Linear discriminant functions to improve the glaucoma probability score analysis to detect glaucomatous optic nerve heads: a multicenter study. J Glaucoma 22:73–79

    Article  PubMed  Google Scholar 

  20. Ford BA, Artes PH, McCormick TA, Nicolela MT, LeBlanc RP, Chauhan BC (2003) Comparison of data analysis tools for detection of glaucoma with the Heidelberg Retina Tomograph. Ophthalmology 110:1145–1150

    Article  PubMed  Google Scholar 

  21. Iester M, Mardin CY, Budde WM, Junemann AG, Hayler JK, Jonas JB (2002) Discriminant analysis formulas of optic nerve head parameters measured by confocal scanning laser tomography. J Glaucoma 11:97–104

    Article  PubMed  Google Scholar 

  22. Swindale NV, Stjepanovic G, Chin A, Mikelberg FS (2000) Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 41:1730–1742

    CAS  PubMed  Google Scholar 

  23. Iester M, Perdicchi A, Capris E, Siniscalco A, Calabria GA, Recupero SM (2008) Comparison between discriminant analysis models and ‘glaucoma probability score’ for the detection of glaucomatous optic nerve head changes. J Glaucoma 17:535–540

    Article  PubMed  Google Scholar 

  24. Oddone F, Centofanti M, Iester M, Rossetti L, Fogagnolo P, Michelessi M, Capris E, Manni G (2009) Sector-based analysis with the Heidelberg retinal tomograph 3 across disc sizes and glaucoma stages a multicenter study. Ophthalmology 116:1106–1111

    Article  PubMed  Google Scholar 

  25. Oddone F, Centofanti M, Rossetti L, Iester M, Fogagnolo P, Capris E, Manni GL (2008) Exploring the Heidelberg Retinal Tomograph 3 diagnostic accuracy across disc sizes and glaucoma stages: a multicenter study. Ophthalmology 115:1358–1365

    Article  PubMed  Google Scholar 

  26. Zangwill LM, Jain S, Racette L, Ernstrom KB, Bowd C, Medeiros FA, Sample PA, Weinreb RW (2007) The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg Retina Tomograph glaucoma probability score. Invest Ophthalmol Vis Sci 48:2653–2660

    Article  PubMed  Google Scholar 

  27. Coops A, Henson DB, Kwartz AJ, Artes PH (2006) Automated analysis of Heidelberg Retina Tomograph optic disc images by glaucoma probability score. Invest Ophthalmol Vis Sci 47:5348–5355

    Article  PubMed  Google Scholar 

  28. Ferreras A, Pajarín AB, Polo V, Larrosa JM, Pablo LE, Honrubia FM (2007) Diagnostic ability of Heidelberg Retina Tomograph 3 classifications. Glaucoma probability score versus moorfields regression analysis. Ophthalmology 114:1981–1987

    Article  PubMed  Google Scholar 

  29. Burgansky-Eliash Z, Wollstein G, Bilonick RA, Ishikawa H, Kagemann L, Schuman JS (2007) Glaucoma Detection with the Heidelberg Retina Tomograph 3. Ophthalmology 114:466–471

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jonas JB et al (1998) Neuroretinal rim width ratios in morphological glaucoma diagnosis. Br J Ophthalmol 82:1366–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Jonas JB, Gusek GC, Naumann GOH (1988) Optic disc, cup and neuroretinal rim size, configuration and correlation in normal eyes. Invest Ophthalmol Vis Sci 29:1151–1158

    CAS  PubMed  Google Scholar 

  32. Harizman N, Oliveira C, Chiang A, Tello C et al (2006) The ISNT rule and differentiation of normal form glaucomatous eyes. Arch Ophthalmol 124:1579–1583

    Article  PubMed  Google Scholar 

  33. Sihota R, Srinivasan G, Dada T, Gupta V et al (2008) Is the ISNT rule violated in early primary open angle glaucoma – a scanning laser tomography study. Eye 22:819–824

    Article  CAS  PubMed  Google Scholar 

  34. Iester M, Bertolotto M, Recupero SM, Perdicchi A (2011) The “ISN’T Rule” in healthy participant optic nerve head by confocal scanning laser ophthalmoscopy. J Glaucoma 20:350–354

    Article  PubMed  Google Scholar 

  35. Larsoson E, Nuija E, Alm A (2011) The optic nerve head assessed with HRT in 5-16–year-old normal children: normal values, repeatability and interocular difference. Acta Ophthalmol 89(8):755–758

    Article  Google Scholar 

  36. Pogrebniak AE, Webrung B, Pogrebniak KL, Shetty RK, Crawford P (2010) Violation of the ISNT rule in nonglaucomatous pediatric optic disc cupping. Invest Ophthalmol Vis Sci 51:890–895

    Article  PubMed  Google Scholar 

  37. Kamal DS, Viswanathan AC, Garway-Heath DF, Hitchings RA, Poinoosawmy D, Bunce C (1999) Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma. Br J Ophthalmol 83:290–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kamal DS, Garway-Heath DF, Hitchings RA, Fitzke FW (2000) Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Br J Ophthalmol 84:993–998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tan JC, Hitchings RA (2003) Approach for identifying glaucomatous optic nerve progression by scanning laser tomography. Invest Ophthalmol Vis Sci 44:2621–2626

    Article  PubMed  Google Scholar 

  40. Tan JC, Poinoosawmy D, Hitchings RA (2004) Tomographic identification of neuroretinal rim loss in high-pressure, normal-pressure, and suspected glaucoma. Invest Ophthalmol Vis Sci 45:2279–2285

    Article  PubMed  Google Scholar 

  41. Chauhan BC, Blanchard JW, Hamilton DC, LeBlanc RP (2000) Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci 41:775–782

    CAS  PubMed  Google Scholar 

  42. Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP (2001) Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 119:1492–1499

    Article  CAS  PubMed  Google Scholar 

  43. Iester MM, Wollstein G, Bilonick RA, Xu J, Ishikawa H, Kagemann L, Schuman JS (2015) Agreement among graders on Heidelberg retina tomograph (HRT) topographic change analysis (TCA) glaucoma progression interpretation. Br J Ophthalmol 99(4):519–523

    Article  PubMed  Google Scholar 

  44. Weinreb RN, Shakiba S, Sample PA, Shahrokni S, van Horn S et al (1995) Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma. Am J Ophthalmol 120:732–738

    Article  CAS  PubMed  Google Scholar 

  45. Iester M, Mikelberg FS, Courtright P, Drance SM (1997) Correlation between the visual field indices and Heidelberg retina tomograph parameters. J Glaucoma 6:78–82

    CAS  PubMed  Google Scholar 

  46. Tole DM, Edwards MP, Davey KG, Menage MJ (1998) The correlation of the visual field with scanning laser ophthalmoscope measurements in glaucoma. Eye 12:686–690

    Article  PubMed  Google Scholar 

  47. Teesalu P, Vihanninjoki K, Airaksinen PJ, Tuulonen A (1998) Hemifield association between blue-on-yellow visual field and optic nerve head topographic measurements. Graefe’s Arch Clin Exp Ophthalmol 236:339–345

    Article  CAS  Google Scholar 

  48. Lan YW, Henson DB, Kwartz AJ (2003) The correlation between optic nerve head topographic measurements, peripapillary nerve fibre layer thickness, and visual field indices in glaucoma. Br J Ophthalmol 87:1135–41

    Article  PubMed Central  PubMed  Google Scholar 

  49. Iester M, Swindale NV, Mikelberg FS (1997) Sector-based analysis of optic nerve head shape parameters and visual field indices in healthy and glaucomatous eyes. J Glaucoma 6:371–6

    Google Scholar 

  50. Brigatti L, Caprioli J (1995) Correlation of visual field with scanning confocal laser optic disc measurements in glaucoma. Arch Ophthalmol 113:1191–4

    Article  CAS  PubMed  Google Scholar 

  51. Bartz-Schmidt KU, Thumann G, Jonescu-Cuypers CP, Krieglstein GK (1999) Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma. Surv Ophthalmol 44(Suppl 1):S41–53

    Article  PubMed  Google Scholar 

  52. Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA (2002) Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Invest Ophthalmol Vis Sci 43:2213–20

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Iester MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iester, M. (2016). Confocal Scanning Laser Ophthalmoscopy. In: Ferreras, A. (eds) Glaucoma Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-18959-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18959-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18958-1

  • Online ISBN: 978-3-319-18959-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics