Skip to main content

Sintering and Densification of Transparent Ceramics

  • Chapter
  • First Online:
Transparent Ceramics

Abstract

There are various sintering techniques that can be used to fabricate transparent ceramics. Conventional sintering techniques include vacuum sintering, hot pressing (HP), and hot isostatic pressing (HIP), while spark plasma sintering (SPS) is more popular than microwave sintering in the new sintering technique category. Every method has its own advantages and disadvantages. Different methods can be combined to offer higher sintering efficiency. The selection of sintering technique is also dependent on materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boulesteix R, Maitre A, Chretien L, Rabinovitch Y, Salle C (2013) Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency. J Am Ceram Soc 96:1724–1731

    Google Scholar 

  2. Stevenson AJ, Bittel BC, Leh CG, Li X, Dickey EC, Lenahan PM et al (2011) Color center formation in vacuum sintered Nd3xY3-3xAl5O12 transparent ceramics. Appl Phys Lett 98:051906

    Google Scholar 

  3. Tang F, Cao YG, Huang JQ, Guo W, Liu HG, Huang QF et al (2012) Multilayer YAG/RE:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method. J Eur Ceram Soc 32:3995–4002

    Google Scholar 

  4. Xu J, Shi Y, Xie JJ, Lei F (2013) Fabrication, microstructure, and luminescent properties of Ce3+-Doped Lu3Al5O12 (Ce:LuAG) transparent ceramics by low-temperature vacuum sintering. J Am Ceram Soc 96:1930–1936

    Google Scholar 

  5. Ikesue A, Furusato I, Kamata K (1995) Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method. J Am Ceram Soc 78:225–228

    Google Scholar 

  6. Ikesue A, Kamata K, Yoshida K (1995) Synthesis of Nd3+, Cr3+-coped YAG ceramics for high-efficiency solid-state lasers. J Am Ceram Soc 78:2545–2547

    Google Scholar 

  7. Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high-performance polycrystalline Nd-YAG ceramics for solid-state lasers. J Am Ceram Soc 78:1033–1040

    Google Scholar 

  8. Chang XH, He DW, Zhang J, Zou YT, Wang JH, Lu TC (2010) Effects of vacuum heat treatment of nano powder on sintering of transparent nano-crystalline MgAl2O4 ceramics. In: Pan W, Gong J, (eds) High-performance ceramics VI. p 657–660

    Google Scholar 

  9. Li JG, Ikegami T, Lee JH, Mori T, Yajima Y (2001) A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder. Ceram Int 27:481–489

    Google Scholar 

  10. Sun YF, Lu TC, Wang XJ (2007) Preparation and optical properties of transparent Mn:MgAl2O4 ceramics. Rare Metal Mater Eng 36:438–441

    Google Scholar 

  11. Rozenburg K, Reimanis IE, Kleebe HJ, Cook RL (2008) Sintering kinetics of a MgAl2O4 spinel doped with LiF. J Am Ceram Soc 91:444–450

    Google Scholar 

  12. Mata-Osoro G, Moya JS, Pecharroman C (2012) Transparent alumina by vacuum sintering. J Eur Ceram Soc 32:2925–2933

    Google Scholar 

  13. Zhang X, Liang S, Zhang P, Zhao T, Bai Y, Bao CG et al (2012) Fabrication of transparent alumina by rapid vacuum pressureless sintering technology. J Am Ceram Soc 95:2116–2119

    Google Scholar 

  14. Li WJ, Zhou SM, Liu N, Lin H, Teng H, Li YK et al (2010) Synthesis and spectral properties of Yb3+/Ho3+ co-doped yttria 2 mu m transparent ceramics. Mater Lett 64:1344–1346

    Google Scholar 

  15. Wen L, Sun XD, Lu Q, Xu GX, Hu XZ (2006) Synthesis of yttria nanopowders for transparent yttria ceramics. Opt Mater 29:239–245

    Google Scholar 

  16. Jin LL, Zhou GH, Shimai S, Zhang J, Wang SW (2010) ZrO2-doped Y2O3 transparent ceramics via slip casting and vacuum sintering. J Eur Ceram Soc 30:2139–2143

    Google Scholar 

  17. Huang YH, Jiang DL, Zhang JX, Lin QL (2009) Fabrication of transparent lanthanum-doped yttria ceramics by combination of two-step sintering and vacuum sintering. J Am Ceram Soc 92:2883–2887

    Google Scholar 

  18. Hou XR, Zhou SM, Jia TT, Lin H, Teng H (2011) Effect of Nd concentration on structural and optical properties of Nd:Y2O3 transparent ceramic. J Lumin 131:1953–1958

    Google Scholar 

  19. Wang Y, Lu B, Sun X, Sun T, Xu H (2011) Synthesis of nanocrystalline Sc2O3 powder and fabrication of transparent Sc2O3 ceramics. Adv Appl Ceram 110:95–98

    Google Scholar 

  20. Wang ZJ, Zhou GH, Qin XP, Yang Y, Zhang GJ, Menke Y et al (2014) Transparent La2-xGdxZr2O7 ceramics obtained by combustion method and vacuum sintering. J Alloy Compd 585:497–502

    Google Scholar 

  21. Zhou GH, Wang ZJ, Zhou BZ, Zhao Y, Zhang GJ, Wang SW (2013) Fabrication of transparent Y2Hf2O7 ceramics via vacuum sintering. Opt Mater 35:774–777

    Google Scholar 

  22. Zhou J, Zhang WX, Wang LA, Shen YQ, Li J, Liu WB et al (2011) Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics. Ceram Int 37:119–125

    Google Scholar 

  23. Zhou J, Zhang WX, Huang TD, Wang LA, Li J, Liu WB et al (2011) Optical properties of Er, Yb co-doped YAG transparent ceramics. Ceram Int 37:513–519

    Google Scholar 

  24. Liu WB, Li J, Jiang BX, Zhang D, Pan YB (2012) Effect of La2O3 on microstructures and laser properties of Nd:YAG ceramics. J Alloy Compd 512:1–4

    Google Scholar 

  25. Li J, Wu YS, Pan YB, Liu WB, Huang LP, Guo JK (2008) Laminar-structured YAG/Nd:YAG/YAG transparent ceramics for solid-state lasers. Int J Appl Ceram Technol 5:360–364

    Google Scholar 

  26. Appiagyei KA, Messing GL, Dumm JQ (2008) Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics. Ceram Int 34:1309–1313

    Google Scholar 

  27. Li YK, Zhou SM, Lin H, Hou XR, Li WJ, Teng H et al (2010) Fabrication of Nd:YAG transparent ceramics with TEOS, MgO and compound additives as sintering aids. J Alloy Compd 502:225–230

    Google Scholar 

  28. Qin XP, Yang H, Zhou GH, Luo DW, Yang Y, Zhang J et al (2012) Fabrication and properties of highly transparent Er:YAG ceramics. Opt Mater 34:973–976

    Google Scholar 

  29. Gong H, Tang DY, Huang H, Ma J (2009) Fabrication of yttrium aluminum garnet transparent ceramics from yttria nanopowders synthesized by carbonate precipitation. J Electroceram 23:89–93

    Google Scholar 

  30. Qin XP, Zhou GH, Yang H, Wong JI, Zhang J, Luo DW et al (2012) Fabrication and plasma resistance properties of transparent YAG ceramics. Ceram Int 38:2529–2535

    Google Scholar 

  31. Gong H, Zhang J, Tang DY, Xie GQ, Huang H, Ma J (2011) Fabrication and laser performance of highly transparent Nd:YAG ceramics from well-dispersed Nd:Y2O3 nanopowders by freeze-drying. J Nanopart Res 13:3853–3860

    Google Scholar 

  32. Yang H, Qin XP, Zhang J, Ma J, Tang DY, Wang SW et al (2012) The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic. Opt Mater 34:940–943

    Google Scholar 

  33. Zhang W, Lu TC, Wei NA, Wang YZ, Ma BY, Li F et al (2012) Assessment of light scattering by pores in Nd:YAG transparent ceramics. J Alloy Compd 520:36–41

    Google Scholar 

  34. Ramirez MO, Wisdom J, Li H, Aung YL, Stitt J, Messing GL et al (2008) Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials. Opt Express 16:5965–5973

    Google Scholar 

  35. Lee SH, Kochawattana S, Messing GL, Dumm JQ, Quarles G, Castillo V (2006) Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics. J Am Ceram Soc 89:1945–1950

    Google Scholar 

  36. Yagi H, Takaichi K, Ueda K, Yanagitani T, Karninskii AA (2006) Influence of annealing conditions on the optical properties of chromium-doped ceramic Y3Al5O12. Opt Mater 29:392–396

    Google Scholar 

  37. Yagi H, Yanagitani T, Takaichi K, Ueda K, Kaminskii AA (2007) Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics. Opt Mater 29:1258–1262

    Google Scholar 

  38. Serantoni M, Piancastelli A, Costa AL, Esposito L (2012) Improvements in the production of Yb:YAG transparent ceramic materials: spray drying optimisation. Opt Mater 34:995–1001

    Google Scholar 

  39. Chen DJ, Mayo MJ (1996) Rapid rate sintering of nanocrystalline ZrO2-3mol% Y2O3. J Am Ceram Soc 79:906–912

    Google Scholar 

  40. Zhang J, Meng F, Todd RI, Fu Z (2010) The nature of grain boundaries in alumina fabricated by fast sintering. Scripta Mater 62:658–661

    Google Scholar 

  41. Hou XR, Zhou SM, Li WJ, Li YK (2010) Study on the effect and mechanism of zirconia on the sinterability of yttria transparent ceramic. J Eur Ceram Soc 30:3125–3129

    Google Scholar 

  42. Chen PL, Chen IW (1996) Grain boundary mobility in Y2O3: defect mechanism and dopant effects. J Am Ceram Soc 79:1801–1809

    Google Scholar 

  43. Hamano K, Kanzaki S (1977) Fabrication of transparent spinel ceramics by reactive hot-pressing. J Ceram Soc Jpn 85:225–230

    Google Scholar 

  44. Cook R, Kochis M, Reimanis I, Kleebe HJ (2005) A new powder production route for transparent spinel windows: powder synthesis and window properties. In: Tustison RW (ed) Window and dome technologies and materials IX. SPIE-The International Society for Optical Engineering, Bellingham, pp 41–47

    Google Scholar 

  45. Zou YT, He DW, Wei XK, Yu RC, Lu TC, Chang XH et al (2010) Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure. Mater Chem Phys 123:529–533

    Google Scholar 

  46. Lu TC, Chang XH, Qi JQ, Luo XJ, Wei QM, Zhu S, et al (2006) Low-temperature high-pressure preparation of transparent nanocrystalline MgAl2O4 ceramics. Appl Phys Lett 88(21):213120–213120

    Google Scholar 

  47. Zhang J, Lu TC, Chang XH, Wei N, Xu W (2009) Related mechanism of transparency in MgAl2O4 nano-ceramics prepared by sintering under high pressure and low temperature. J Phys D-Appl Phys 42(5):052002

    Google Scholar 

  48. Chen QY, Meng CM, Lu TC, Chang XH, Ji GF, Zhang L et al (2010) Enhancement of sintering ability of magnesium aluminate spinel (MgAl2O4) ceramic nanopowders by shock compression. Powder Technol 200:91–95

    Google Scholar 

  49. Wollmershauser JA, Feigelson BN, Gorzkowski EP, Ellis CT, Goswami R, Qadri SB et al (2014) An extended hardness limit in bulk nanoceramics. Acta Mater 69:9–16

    Google Scholar 

  50. Hall EO (1951) The deformation and aging of mild steel, 3. Discussion of results. Proc Phys Soc Lond Sect B 64:747–753

    Google Scholar 

  51. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28

    Google Scholar 

  52. Liu J, Liu K, Wang HS, Gao F, Liao R (2012) Preparation of silicon nitride porous ceramics. In: Pan W, Gong JH (eds) High-performance ceramics III, parts 1 and 2. Trans Tech Publications Ltd., Stafa-Zurich, pp 824–827

    Google Scholar 

  53. Hou XR, Zhou SM, Jia TT, Lin H, Teng H (2011) White light emission in Tm3+/Er3+/Yb3+ tri-doped Y2O3 transparent ceramic. J Alloy Compd 509:2793–2796

    Google Scholar 

  54. Podowitz SR, Gaume R, Feigelson RS (2010) Effect of europium concentration on densification of transparent Eu:Y2O3 scintillator ceramics using hot pressing. J Am Ceram Soc 93:82–88

    Google Scholar 

  55. Haertling GH, Land CE (1971) Hot-pressed (Pb, La)(Zr, Ti)O3 ferroelectric ceramics for electrooptic applications. J Am Ceram Soc 54:1–11

    Google Scholar 

  56. Jiang H, Zou YK, Chen Q, Li KK, Zhang R, Wang Y et al (2005) Transparent electro-optic ceramics and devices. In: Ming H, Zhang XP, Chen MY (eds) Optoelectronic devices and integration, pts 1 and 2. SPIE-The International Society for Optical Engineering, Bellingham, pp 380–394

    Google Scholar 

  57. Sun P, Xu CN, Akiyama M, Watanabe T (1999) Controlled oxygen partial pressure sintering of (Pb, La)(Zr, Ti)O3 ceramics. J Am Ceram Soc 82:1447–1450

    Google Scholar 

  58. Yin QR, Ding AL, Zheng XS, Qiu PS, Shen MR, Cao WW (2004) Preparation and characterization of transparent PZN–PLZT ceramics. J Mater Res 19:729–732

    Google Scholar 

  59. Ruan W, Li GR, Zeng JT, Bian JJ, Kamzina LS, Zeng HR et al (2010) Large electro-optic effect in La-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramic by two-stage sintering. J Am Ceram Soc 93:2128–2131

    Google Scholar 

  60. Zeng X, He XY, Cheng WX, Qiu PS, Xia B (2014) Effect of Dy substitution on ferroelectric, optical and electro-optic properties of transparent Pb0.90La0.10(Zr0.65Ti0.35)O3 ceramics. Ceram Int 40:6197–6202

    Google Scholar 

  61. Ji WL, He XY, Cheng WX, Qiu PS, Zeng X, Xia B et al (2015) Effect of La content on dielectric, ferroelectric and electro-optic properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 transparent ceramics. Ceram Int 41:1950–1956

    Google Scholar 

  62. Giniewicz JR, McHenry DA, Shrout TR, Jang SJ, Bhalla AS, Ainger FW (1990) Characterization of (1−x)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 and Pb(Sc1/2Ta1/2)O3 transparent ceramics prepared by uniaxial hot-pressing. Ferroelectrics 109:167–172

    Google Scholar 

  63. Su XL, Wang PL, Chen WW, Zhu B, Cheng YB, Yan DS (2004) Translucent α-sialon ceramics by hot pressing. J Am Ceram Soc 87:730–732

    Google Scholar 

  64. Xie ZH, Hoffman M, Moon RJ, Munroe PR, Cheng YB (2004) Subsurface indentation damage and mechanical characterization of α-sialon ceramics. J Am Ceram Soc 87:2114–2124

    Google Scholar 

  65. Xie ZH, Hoffman M, Cheng YB (2002) Microstructural tailoring and characterization of a calcium alpha-SiAlON composition. J Am Ceram Soc 85:812–818

    Google Scholar 

  66. Jones MI, Hyuga H, Hirao K (2003) Optical and mechanical properties of α/β composite sialons. J Am Ceram Soc 86:520–522

    Google Scholar 

  67. Fang Y, Agrawal D, Skandan G, Jain M (2004) Fabrication of translucent MgO ceramics using nanopowders. Mater Lett 58:551–554

    Google Scholar 

  68. Lyberis A, Stevenson AJ, Suganuma A, Ricaud S, Druon F, Herbst F et al (2012) Effect of Yb3+ concentration on optical properties of Yb:CaF2 transparent ceramics. Opt Mater 34:965–968

    Google Scholar 

  69. Lyberis A, Patriarche G, Gredin P, Vivien D, Mortier M (2011) Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J Eur Ceram Soc 31:1619–1630

    Google Scholar 

  70. Swinkels FB, Wilkinson DS, Arzt E, Ashby MF (1983) Mechanism of hot-isostatic pressing. Acta Metall 31:1829–1840

    Google Scholar 

  71. Li WB, Ashby MF, Easterling KE (1987) On densification and shape change during hot isostatic pressing. Acta Metall 35:2831–2842

    Google Scholar 

  72. Atkinson HV, Davies S (2000) Fundamental aspects of hot isostatic pressing: an overview. Metall Mater Trans A-Phys Metall Mater Sci 31:2981–3000

    Google Scholar 

  73. Loh NL, Sia KY (1992) An overview of hot isostatic pressing. J Mater Process Technol 30:45–65

    Google Scholar 

  74. Bocanegra-Bernal MH (2004) Hot isostatic pressing (HIP) technology and its applications to metals and ceramics. J Mater Sci 39:6399–6420

    Google Scholar 

  75. Petit J, Dethare P, Sergent A, Marino R, Ritti MH, Landais S et al (2011) Sintering of α-alumina for highly transparent ceramic applications. J Eur Ceram Soc 31:1957–1963

    Google Scholar 

  76. Krell A, Klimke J (2006) Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina. J Am Ceram Soc 89:1985–1992

    Google Scholar 

  77. Krell A, Klimke J, Hutzler T (2009) Advanced spinel and sub-μm Al2O3 for transparent armour applications. J Eur Ceram Soc 29:275–281

    Google Scholar 

  78. Krell A, Blank P, Ma HW, Hutzler T, Nebelung M (2003) Processing of high-density submicrometer Al2O3 for new applications. J Am Ceram Soc 86:546–553

    Google Scholar 

  79. Krell A, Blank P, Ma HW, Hutzler T, van Bruggen MPB, Apetz R (2003) Transparent sintered corundum with high hardness and strength. J Am Ceram Soc 86:12–18

    Google Scholar 

  80. Ikesue A, Kamata K (1996) Microstructure and optical properties of hot isostatically pressed Nd:YAC ceramics. J Am Ceram Soc 79:1927–1933

    Google Scholar 

  81. Lee SH, Kupp ER, Stevenson AJ, Anderson JM, Messing GL, Li X et al (2009) Hot isostatic pressing of transparent Nd:YAG ceramics. J Am Ceram Soc 92:1456–1463

    Google Scholar 

  82. Suarez M, Fernandez A, Menendez JL, Nygren M, Torrecillas R, Zhao Z (2010) Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route. J Eur Ceram Soc 30:1489–1494

    Google Scholar 

  83. Zhang W, Lu TC, Ma BY, Wei N, Lu ZW, Li F et al (2013) Improvement of optical properties of Nd:YAG transparent ceramics by post-annealing and post hot isostatic pressing. Opt Mater 35:2405–2410

    Google Scholar 

  84. Dericioglu AF, Kagawa Y (2003) Effect of grain boundary microcracking on the light transmittance of sintered transparent MgAl2O4. J Eur Ceram Soc 23:951–959

    Google Scholar 

  85. Dericioglu AF, Boccaccini AR, Dlouhy I, Kagawa Y (2005) Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics. Mater Trans 46:996–1003

    Google Scholar 

  86. Esposito L, Piancastelli A, Miceli P, Martelli S (2015) A thermodynamic approach to obtaining transparent spinel (MgAl2O4) by hot pressing. J Eur Ceram Soc 35:651–661

    Google Scholar 

  87. Sutorik AC, Gilde G, Cooper C, Wright J, Hilton C (2012) The effect of varied amounts of LiF sintering aid on the transparency of alumina rich spinel ceramic with the composition MgO-1.5Al2O3. J Am Ceram Soc 95:1807–1810

    Google Scholar 

  88. Sutorik AC, Gilde G, Swab JJ, Cooper C, Gamble R, Shanholtz E (2012) Transparent solid solution magnesium aluminate spinel polycrystalline ceramic with the alumina-rich composition MgO-1.2Al2O3. J Am Ceram Soc 95:636–643

    Google Scholar 

  89. Mouzon J, Maitre A, Frisk L, Lehto N, Oden M (2009) Fabrication of transparent yttria by HIP and the glass-encapsulation method. J Eur Ceram Soc 29:311–316

    Google Scholar 

  90. Serivalsatit K, Ballato J (2010) Submicrometer grain-sized transparent erbium-doped scandia ceramics. J Am Ceram Soc 93:3657–3662

    Google Scholar 

  91. Seeley ZM, Kuntz JD, Cherepy NJ, Payne SA (2011) Transparent Lu2O3:Eu ceramics by sinter and HIP optimization. Opt Mater 33:1721–1726

    Google Scholar 

  92. Tsukuma K, Yamashita I, Kusunose T (2008) Transparent 8 mol% Y2O3-ZrO2 (8Y) ceramics. J Am Ceram Soc 91:813–818

    Google Scholar 

  93. Oh KS, Kim DY, Cho SJ (1995) Shrinkage of large isolated pores during hot isostatic pressing of presintered alumina ceramics. J Am Ceram Soc 78:2537–2540

    Google Scholar 

  94. Sakuma T, Ikuhara Y, Takigawa Y, Thavorniti P (1997) Importance of grain boundary chemistry on the high-temperature plastic flow in oxide ceramics. Mater Sci Eng A-Struct Mater Prop Microstruct Process 234:226–229

    Google Scholar 

  95. Yoshida H, Kuwabara A, Yamamoto T, Ikuhara Y, Sakuma T (2005) High temperature plastic flow and grain boundary chemistry in oxide ceramics. J Mater Sci 40:3129–3135

    Google Scholar 

  96. Hayashi K, Kobayashi O, Toyoda S, Morinaga K (1991) Transmission optical-properties of polycrystalline alumina with submicro grains. Mater Trans JIM 32:1024–1029

    Google Scholar 

  97. Tsukuma K (2006) Transparent MgAl2O4 spinel ceramics produced by HIP post-sintering. J Ceram Soc Jpn 114:802–806

    Google Scholar 

  98. Cherepy NJ, Kuntz JD, Roberts JJ, Hurst TA, Drury OB, Sanner RD et al (2008) Transparent ceramic scintillator fabrication, properties and applications. In: Burger A, Franks LA, James RB (eds) Hard X-ray, gamma-ray, and neutron detector physics X. SPIE-The International Society for Optical Engineering, Bellingham

    Google Scholar 

  99. Alberta EF, Bhalla AS (2001) Piezoelectric and dielectric properties of transparent Pb(Ni1/3Nb2/3)1-x-yZrxTiyO3 ceramics prepared by hot isostatic pressing. Int J Inorg Mater 3:987–995

    Google Scholar 

  100. Schneider H, Schmucker M, Ikeda K, Kaysser WA (1993) Optically translucent mullite ceramics. J Am Ceram Soc 76:2912–2914

    Google Scholar 

  101. Aubry P, Bensalah A, Gredin P, Patriarche G, Vivien D, Mortier M (2009) Synthesis and optical characterizations of Yb-doped CaF2 ceramics. Opt Mater 31:750–753

    Google Scholar 

  102. Uematsu K, Takagi M, Honda T, Uchida N, Saito K (1989) Transparent hydroxyapatite prepared by hog isostatic pressing of filter cake. J Am Ceram Soc 72:1476–1478

    Google Scholar 

  103. Mandal H (1999) New developments in α-SiAlON ceramics. J Eur Ceram Soc 19:2349–2357

    Google Scholar 

  104. Itatani K, Tsujimoto T, Kishimoto A (2006) Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing. J Eur Ceram Soc 26:639–645

    Google Scholar 

  105. Ji YM, Jiang DY, Fen T, Shi JL (2005) Fabrication of transparent La2Hf2O7 ceramics from combustion synthesized powders. Mater Res Bull 40:553–559

    Google Scholar 

  106. Roussel N, Lallemant L, Durand B, Guillemet S, Ching JYC, Fantozzi G et al (2011) Effects of the nature of the doping salt and of the thermal pre-treatment and sintering temperature on spark plasma sintering of transparent alumina. Ceram Int 37:3565–3573

    Google Scholar 

  107. Kim BN, Hiraga K, Morita K, Yoshida H (2007) Spark plasma sintering of transparent alumina. Scripta Mater 57:607–610

    Google Scholar 

  108. Wang C, Zhao Z (2010) Transparent polycrystalline ruby ceramic by spark plasma sintering. Mater Res Bull 45:1127–1131

    Google Scholar 

  109. Jin XH, Gao L, Sun J (2010) Highly transparent alumina spark plasma sintered from common-grade commercial powder: the effect of powder treatment. J Am Ceram Soc 93:1232–1236

    Google Scholar 

  110. Aman Y, Garnier V, Djurado E (2009) Influence of green state processes on the sintering behaviour and the subsequent optical properties of spark plasma sintered alumina. J Eur Ceram Soc 29:3363–3370

    Google Scholar 

  111. Dang KQ, Takei S, Kawahara M, Nanko M (2011) Pulsed electric current sintering of transparent Cr-doped Al2O3. Ceram Int 37:957–963

    Google Scholar 

  112. Nanko M, Dang KQ (2014) Two-step pulsed electric current sintering of transparent Al2O3 ceramics. Adv Appl Ceram 113:80–84

    Google Scholar 

  113. Chaim R, Marder-Jaeckel R, Shen JZ (2006) Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering. Mater Sci Eng A-Struct Mater Prop Microstruct Process 429:74–78

    Google Scholar 

  114. Chaim R, Kalina M, Shen JZ (2007) Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering. J Eur Ceram Soc 27:3331–3337

    Google Scholar 

  115. An LQ, Ito A, Goto T (2011) Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering. J Eur Ceram Soc 31:1597–1602

    Google Scholar 

  116. Yoshida H, Morita K, Kim BN, Hiraga K, Yamanaka K, Soga K et al (2011) Low-temperature spark plasma sintering of yttria ceramics with ultrafine grain size. J Am Ceram Soc 94:3301–3307

    Google Scholar 

  117. Yoshida H, Morita K, Kim BN, Hiraga K, Kodo M, Soga K et al (2008) Densification of nanocrystalline yttria by low temperature spark plasma sintering. J Am Ceram Soc 91:1707–1710

    Google Scholar 

  118. Zhang HB, Kim BN, Morita K, Yoshida H, Hiraga K, Sakka Y (2011) Fabrication of transparent yttria by high-pressure spark plasma sintering. J Am Ceram Soc 94:3206–3210

    Google Scholar 

  119. An LQ, Ito A, Goto T (2012) Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles. J Eur Ceram Soc 32:1035–1040

    Google Scholar 

  120. An LQ, Ito A, Goto T (2011) Fabrication of transparent lutetium oxide by spark plasma sintering. J Am Ceram Soc 94:695–698

    Google Scholar 

  121. Anselmi-Tamburini U, Woolman JN, Munir ZA (2007) Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv Funct Mater 17:3267–3273

    Google Scholar 

  122. Zhang HB, Kim BN, Morita K, Hiraga HYK, Sakka Y (2011) Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering. Sci Technol Adv Mater 12:055003

    Google Scholar 

  123. Lei LW, Fu ZY, Wang H, Lee SW, Niihara K (2012) Transparent yttria stabilized zirconia from glycine-nitrate process by spark plasma sintering. Ceram Int 38:23–28

    Google Scholar 

  124. Chaim R, Shen ZJ, Nygren M (2004) Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. J Mater Res 19:2527–2531

    Google Scholar 

  125. Frage N, Cohen S, Meir S, Kalabukhov S, Dariel MP (2007) Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel. J Mater Sci 42:3273–3275

    Google Scholar 

  126. Meir S, Kalabukhov S, Froumin N, Dariel MP, Frage N (2009) Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc 92:358–364

    Google Scholar 

  127. Morita K, Kim BN, Hiraga K, Yoshida H (2008) Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing. Scripta Mater 58:1114–1117

    Google Scholar 

  128. Zhang GM, Wang YC, Fu ZY, Wang H, Wang WM, Zhang JY et al (2009) Transparent mullite ceramic from single-phase gel by spark plasma sintering. J Eur Ceram Soc 29:2705–2711

    Google Scholar 

  129. Zhang GM, Fu ZY, Wang YC, Wang H, Wang WM, Zhang JY (2009) Effect of precursors on transmittance and microstructure of mullite ceramics. In: Kim H, Yang JF, Sekino T, Lee SW (eds) Eco-materials processing and design X. p 429–432

    Google Scholar 

  130. Watanabe Y, Ikoma T, Monkawa A, Suetsugu Y, Yamada H, Tanaka J et al (2005) Fabrication of transparent hydroxyapatite sintered body with high crystal orientation by pulse electric current sintering. J Am Ceram Soc 88:243–245

    Google Scholar 

  131. Eriksson M, Liu Y, Hu JF, Gao L, Nygren M, Shen ZJ (2011) Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. J Eur Ceram Soc 31:1533–1540

    Google Scholar 

  132. An L, Ito A, Goto T (2011) Fabrication of transparent Lu3NbO7 by spark plasma sintering. Mater Lett 65:3167–3169

    Google Scholar 

  133. Xiong Y, Fu ZY, Wang YC, Quan F (2006) Fabrication of transparent AIN ceramics. J Mater Sci 41:2537–2539

    Google Scholar 

  134. Wu YJ, Kimura R, Uekawa N, Kakegawa K, Sasaki Y (2002) Spark plasma sintering of transparent PbZrO3–PbTiO3–Pb(Zn1/3Nb2/3)O3 ceramics. Japan J Appl Phys Part 2-Lett 41:L219–L221

    Google Scholar 

  135. Wu YJ, Li J, Kimura R, Uekawa N, Kakegawa K (2005) Effects of preparation conditions on the structural and optical properties of spark plasma-sintered PLZT (8/65/35) ceramics. J Am Ceram Soc 88:3327–3331

    Google Scholar 

  136. Liu J, Shen ZJ, Yao WL, Zhao YH, Mukherjee AK (2010) Visible and infrared transparency in lead-free bulk BaTiO3 and SrTiO3 nanoceramics. Nanotechnology 21:075706

    Google Scholar 

  137. Wu YJ, Wang N, Wu SY, Chen XM (2011) Transparent barium strontium titanate ceramics prepared by spark plasma sintering. J Am Ceram Soc 94:1343–1345

    Google Scholar 

  138. Kim B-N, Hiraga K, Morita K, Yoshida H (2009) Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina. J Eur Ceram Soc 29:323–327

    Google Scholar 

  139. Jiang D, Hulbert DM, Anselmi-Tamburini U, Ng T, Land D, Mukherjee AK (2007) Spark plasma sintering and forming of transparent polycrystalline Al2O3 windows and domes. In: Tustison RW (ed) Window and dome technologies and materials X. SPIE-The International Society for Optical Engineering, Bellingham, p 54509

    Google Scholar 

  140. Wang C, Zhao Z (2009) Transparent MgAl2O4 ceramic produced by spark plasma sintering. Scripta Mater 61:193–196

    Google Scholar 

  141. Krell A, Blank P (1995) Grain-size dependence of hardness in dense submicrometer alumina. J Am Ceram Soc 78:1118–1120

    Google Scholar 

  142. Palmero P, Bonelli B, Fantozzi G, Spina G, Bonnefont G, Montanaro L et al (2013) Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS. Mater Res Bull 48:2589–2597

    Google Scholar 

  143. An LQ, Ito A, Goto T (2011) Highly transparent lutetium titanium oxide produced by spark plasma sintenng. J Eur Ceram Soc 31:237–240

    Google Scholar 

  144. An LQ, Ito A, Goto T (2012) Effect of calcination temperature on the fabrication of transparent lutetium titanate by spark plasma sintering. Ceram Int 38:4973–4977

    Google Scholar 

  145. An LQ, Ito A, Goto T (2013) Fabrication of transparent Lu2Hf2O7 by reactive spark plasma sintering. Opt Mater 35:817–819

    Google Scholar 

  146. An LQ, Ito A, Goto T (2011) Fabrication of transparent Lu3NbO7 by spark plasma sintering. Mater Lett 65:3167–3169

    Google Scholar 

  147. An LQ, Ito A, Goto T (2013) Transparent Lu3NbO7 bodies prepared by reactive spark plasma sintering and their optical and mechanical properties. Ceram Int 39:383–387

    Google Scholar 

  148. Sahin FC, Kanbur HE, Apak B (2012) Preparation of AlON ceramics via reactive spark plasma sintering. J Eur Ceram Soc 32:925–929

    Google Scholar 

  149. Chen S, Wu YQ, Yang Y (2013) Spark plasma sintering of hexagonal structure Yb3+-doped Sr5(PO4)3F transparent ceramics. J Am Ceram Soc 96:1694–1697

    Google Scholar 

  150. Cheng JP, Agrawal D, Zhang YJ, Roy R (2002) Microwave sintering of transparent alumina. Mater Lett 56:587–592

    Google Scholar 

  151. Brosnan KH, Messing GL, Agrawal DK (2003) Microwave sintering of alumina at 2.45 GHz. J Am Ceram Soc 86:1307–1312

    Google Scholar 

  152. Fang Y, Cheng JP, Agrawal DK (2004) Effect of powder reactivity on microwave sintering of alumina. Mater Lett 58:498–501

    Google Scholar 

  153. Esposito L, Piancastelli A, Bykov Y, Egorov S, Eremeev A (2013) Microwave sintering of Yb:YAG transparent laser ceramics. Opt Mater 35:761–765

    Google Scholar 

  154. Cheng JP, Agrawal D, Zhang YJ, Roy R (2001) Microwave reactive sintering to fully transparent aluminum oxynitride (AlON) ceramics. J Materi Sci Lett 20:77–79

    Google Scholar 

  155. Fang Y, Roy R, Agrawal DK, Roy DM (1996) Transparent mullite ceramics from diphasic aerogels by microwave and conventional processings. Mater Lett 28:11–15

    Google Scholar 

  156. Li MJ, Wu YC, Yen FS, Huang CY (2011) Influence of ionic mobility on the phase transformation route in Y3Al5O12 (YAG) stoichiometry. J Eur Ceram Soc 31:2099–2106

    Google Scholar 

  157. Rybakov KI, Semenov VE (1994) Possibility of plastic-deformation of an ionic-crystal due to the nonthermal influence of a high-frequency electric-field. Phys Rev B 49:64–68

    Google Scholar 

  158. Rybakov KI, Semenov VE (1995) Mass-transport in ionic-crystals induced by the ponderomotive action of a high-frequency electric-field. Phys Rev B 52:3030–3033

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, L.B. et al. (2015). Sintering and Densification of Transparent Ceramics. In: Transparent Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18956-7_7

Download citation

Publish with us

Policies and ethics