Skip to main content

Powder Characterization and Compaction

  • Chapter
  • First Online:
Transparent Ceramics

Abstract

Once a ceramic powder is synthesized, there should be some parameters or data to demonstrate its properties or quality. The understanding of powder quality is important for two reasons: (i) quality control of the starting powders and (ii) microstructure monitoring or controlling of the final ceramics with desired properties and performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sigmund WM, Bell NS, Bergstrom L (2000) Novel powder-processing methods for advanced ceramics. J Am Ceram Soc 83:1557–1574

    Google Scholar 

  2. Uematsu K (2014) Processing defects in ceramic powders and powder compacts. Adv Powder Technol 25:154–162

    Google Scholar 

  3. Kendall K (1989) Influence of powder structure on processing and properties of advanced ceramics. Powder Technol 58:151–161

    Google Scholar 

  4. Uematsu K (2012) Process defects. In: Riedel R, Chen IW (eds) Ceramic science and technology. Wiley, New York

    Google Scholar 

  5. Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83:2341–2359

    Google Scholar 

  6. Tallon C, Franks GV (2011) Recent trends in shape forming from colloidal processing: a review. J Ceram Soc Jpn 119:147–160

    Google Scholar 

  7. Lange FF (1998) Colloidal processing of powder for reliable ceramics. Curr Opin Solid State Mater Sci 3:496–500

    Google Scholar 

  8. Ragulya AV (2008) Consolidation of ceramic nanopowders. Adv Appl Ceram 107:118–134

    Google Scholar 

  9. Mayo MJ (1996) Processing of nanocrystalline ceramics from ultrafine particles. Int Mater Rev 41:85–115

    Google Scholar 

  10. Blackburn S, Wilson DI (2008) Shaping ceramics by plastic processing. J Eur Ceram Soc 28:1341–1351

    Google Scholar 

  11. Evans JRG (2008) Seventy ways to make ceramics. J Eur Ceram Soc 28:1421–1432

    Google Scholar 

  12. Janssen R, Scheppokat S, Claussen N (2008) Tailor-made ceramic-based components—advantages by reactive processing and advanced shaping techniques. J Eur Ceram Soc 28:1369–1379

    Google Scholar 

  13. Deckers J, Vleugels J, Kruthl JP (2014) Additive manufacturing of ceramics: a review. J Ceramic Sci Technol 5:245–260

    Google Scholar 

  14. Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L et al (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16:729–754

    Google Scholar 

  15. Heule M, Vuillemin S, Gauckler LJ (2003) Powder-based ceramic meso- and microscale fabrication processes. Adv Mater 15:1237–1245

    Google Scholar 

  16. Tay BY, Evans JRG, Edirisinghe MJ (2003) Solid freeform fabrication of ceramics. Int Mater Rev 48:341–370

    Google Scholar 

  17. Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping J 20:192–204

    Google Scholar 

  18. Onoda GY Jr, Hench LL (1978) Ceramic processing before firing. Wiley, New York

    Google Scholar 

  19. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. CRC Press, New York

    Google Scholar 

  20. Black DL, McQuay MQ, Bonin MP (1996) Laser-based techniques for particle-size measurement: a review of sizing methods and their industrial applications. Prog Energy Combust Sci 22:267–306

    Google Scholar 

  21. Matyi RJ, Schwartz LH, Butt JB (1987) Particle-size, particle-size distribution, and related measurements of supported metal-catalysts. Catal Rev—Sci Eng 29:41–99

    Google Scholar 

  22. Miller BV, Lines RW (1988) Recent advances in particle-size measurements—a critical review. CRC Crit Rev Anal Chem 20:75–116

    Google Scholar 

  23. Allen T (1990) Particle size measurement, 4th edn. Chapman and Hall, London

    Google Scholar 

  24. Beddow JK (1980) Particulate science and technology. Chemical Publishing Co., New York

    Google Scholar 

  25. Staiger M, Bowen P, Ketterer J, Bohonek J (2002) Particle size distribution measurement and assessment of agglomeration of commercial nanosized ceramic particles. J Dispersion Sci Technol 23:619–630

    Google Scholar 

  26. Charalampopoulos TT (1992) Mophology and dynamics of agglomerated particulates in combustion systems using light-scattering techniques. Prog Energy Combust Sci 18:13–45

    Google Scholar 

  27. Xu RL (2015) Light scattering: a review of particle characterization applications. Particuology 18:11–21

    Google Scholar 

  28. Fan XF, Zheng WT, Singh DJ (2014) Light scattering and surface plasmons on small spherical particles. Light-Sci Appl 3

    Google Scholar 

  29. Brar SK, Verma M (2011) Measurement of nanoparticles by light-scattering techniques. TRAC-Trends Anal Chem 30:4–17

    Google Scholar 

  30. McGarvey M, McGregor D, McKay RB (1997) Particle size analysis by laser diffraction in organic pigment technology. Prog Org Coat 31:223–228

    Google Scholar 

  31. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Boston

    Google Scholar 

  32. Klug HP, Alexander LF (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  33. Pecharsky V, Zavalij P (2009) Fundamentals of powder diffraction and structural characterization of materials, 2nd edn. Springer, Berlin

    Google Scholar 

  34. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, New York

    Google Scholar 

  35. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Google Scholar 

  36. Brunauer S, Emmett PH (1937) The use of low temperature van der Waals adsorption isotherms in determining the surface areas of various adsorbents. J Am Chem Soc 59:2682–2689

    Google Scholar 

  37. Brunauer S, Emmett PH (1940) Chemisorptions of gases on iron synthetic ammonia catalysts. J Am Chem Soc 62:1732–1746

    Google Scholar 

  38. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Google Scholar 

  39. Langmuir I (1916) The constitution and fundamental properties of solids and liquids, part I. Solids. J Am Chem Soc 38:2221–2295

    Google Scholar 

  40. Langmuir I (1917) The constitution and fundamental properties of solids and liquids, II. Liquids. J Am Chem Soc 39:1848–1906

    Google Scholar 

  41. Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis, 5th edn. Harcourt Brace, Philadelphia

    Google Scholar 

  42. Jenkins R (1999) X-ray fluoresence spectrometry, 2nd edn. Wiley, New York

    Google Scholar 

  43. Walls JM (1989) Methods of surface analysis. Cambridge University Press, Cambridge

    Google Scholar 

  44. Hudson JB (1992) Surface science: an introduction. Butterworth-Heinemann, Boston

    Google Scholar 

  45. Woodruff DP, Delchar TA (1994) Modern techniques of surface analysis, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  46. Galakhov AV (2014) Powder compact structure. Part 1. Particle packing inhomogeneity. Refract Ind Ceram 55:199–208

    Google Scholar 

  47. Galakhov AV (2014) Powder compact structure. Part 2. Methods for increasing particle packing uniformity. Refract Ind Ceram 55:209–219

    Google Scholar 

  48. Harthong B, Jerier JF, Richefeu V, Chareyre B, Doremus P, Imbault D et al (2012) Contact impingement in packings of elastic-plastic spheres, application to powder compaction. Int J Mech Sci 61:32–43

    Google Scholar 

  49. Zhong WZ, He KJ, Zhou ZY, Xia W, Li YY (2009) Physical model and simulation system of powder packing. Acta Physica Sinica 58:S21–S28

    Google Scholar 

  50. Zhou JH, Zhang YW, Chen JK (2009) Numerical simulation of random packing of spherical particles for powder-based additive manufacturing. J Manuf Sci Eng-Trans ASME 131

    Google Scholar 

  51. Dinger DR, Funk JE (1997) Particle-packing phenomena and their application in materials processing. MRS Bull 22:19–23

    Google Scholar 

  52. Cumberland DJ, Crawford RJ (1987) The packing of particles. Elsevier, New York

    Google Scholar 

  53. German RM (1989) Particle packing characteristics. Metal Powder Industries Federation, Princeton

    Google Scholar 

  54. Sethi G, Myers NS, German RM (2008) An overview of dynamic compaction in powder metallurgy. Int Mater Rev 53:219–234

    Google Scholar 

  55. Westman AER, Hugill HR (1930) The packing of particles. J Am Ceram Soc 13:767–779

    Google Scholar 

  56. Scott GD (1960) Packing of equal spheres. Nature 188:908–909

    Google Scholar 

  57. Scott GD, Charlesworth AM, Mak MK (1964) On random packing of spheres. J Chem Phys 40:611–612

    Google Scholar 

  58. Scott GD, Knight KR, Bernal JD, Mason J (1962) Radial distribution of random close packing of equal spheres. Nature 194:956–957

    Google Scholar 

  59. Scott GD, Mader DL (1964) Angular distribution of random close-packed equal spheres. Nature 201:382–383

    Google Scholar 

  60. Frost HJ (1982) Overview 17—cavities in dense random packings. Acta Metall 30:889–904

    Google Scholar 

  61. Khramtsov VD (2009) The packing density of the particles in powder mixtures of different dispersities. Russ J Non-Ferrous Metals 50:294–297

    Google Scholar 

  62. Frost HJ, Raj R (1982) Limiting densities for dense random packing of spheres. J Am Ceram Soc 65:C19–C21

    Google Scholar 

  63. McGeary RK (1961) Mechanical packing of spherical particles. J Am Ceram Soc 44:513–522

    Google Scholar 

  64. Wakeman RJ (1975) Packing densities of particles with log-normal size distributions. Powder Technol 11:297–299

    Google Scholar 

  65. Yu AB, Standish N (1993) A study of the packing of particles with a mixture size distribution. Powder Technol 76:113–124

    Google Scholar 

  66. Bierwage GP, Saunders TE (1974) Studies of effects of particle-size distribution on packing efficiency of particles. Powder Technol 10:111–119

    Google Scholar 

  67. Andreasen AHM, Andersen J (1930) The relationship between grain gradation and the clearance in products from loosening grains (with some experiments). Kolloid-Zeitschrift 50:217–228

    Google Scholar 

  68. Burk RC, Apte PS (1987) A packing scheme for real size distributions. Am Ceram Soc Bull 66:1389–1392

    Google Scholar 

  69. Burk RC, Zawidzki TW, Apte PS (1983) Particle-size distribution and its relation to sintering 1: a case study for UO2 powders. J Am Ceram Soc 66:815–818

    Google Scholar 

  70. Roosen A, Bowen HK (1988) Influence of various consolidation techniques on the green microstructure and sintering behavior of alumina powders. J Am Ceram Soc 71:970–977

    Google Scholar 

  71. Moreno R (1992) The role of slip additives in tape casting technology, 2. Binders and plasticizers. Am Ceram Soc Bull 71:1647–1657

    Google Scholar 

  72. Moreno R (1992) The role of slip additives in tape casting technology, 1. Solvents and dispersants. Am Ceram Soc Bull 71:1521–1531

    Google Scholar 

  73. Cerrutti BM, de Souza CS, Castellan A, Ruggiero R, Frollini E (2012) Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions. Ind Crops Prod 36:108–115

    Google Scholar 

  74. Leo S, Tallon C, Franks GV (2014) Aqueous and nonaqueous colloidal processing of difficult-to-densify ceramics: suspension rheology and particle packing. J Am Ceram Soc 97:3807–3817

    Google Scholar 

  75. Sikora M, Garcia VJ, Schilling CH, Tomasik P, Li CP (2004) Blends of maltodextrin and other polysaccharides as binders of aqueous alpha-alumina suspensions for ceramic processing. Starch-Starke 56:424–431

    Google Scholar 

  76. Cesarano J, Aksay IA (1988) Processing of highly concentrated aqueous alpha-alumina suspensions stabilized with poly-electrolytes. J Am Ceram Soc 71:1062–1067

    Google Scholar 

  77. Cesarano J, Aksay IA, Bleier A (1988) Stability of aqueous alpha-Al2O3 suspensions with poly(methacrylic acid) poly-electrolyte. J Am Ceram Soc 71:250–255

    Google Scholar 

  78. Dulina NA, Deineka TG, Yavetskiy RP, Sergienko ZP, Doroshenko AG, Mateychenko PV et al (2011) Comparison of dispersants performance on the suspension Lu2O3:Eu3+ stability and high-density compacts on their basis. Ceram Int 37:1645–1651

    Google Scholar 

  79. Khan AU, Mahmood N, Luckham PF (2012) Rheological characterization of alumina ceramic suspensions in presence of a dispersant and a binder. J Dispersion Sci Technol 33:1210–1217

    Google Scholar 

  80. Lv Y-H, Liu H, Sang Y-H, Liu S-J, Chen T, Qin H-M et al (2010) Electrokinetic properties of Nd:YAG nanopowder and a high concentration slurry with ammonium poly(acrylic acid) as dispersant. J Mater Sci 45:706–712

    Google Scholar 

  81. Mori T, Inamine I, Wada R, Hida T, Kiguchi T, Satone H et al (2009) Effects of particle concentration and additive amount of dispersant on adsorption behavior of dispersant to alumina particles. J Ceram Soc Jpn 117:917–921

    Google Scholar 

  82. Prabhakaran K, Sooraj R, Kumbhar CS, Melkeri A, Gokhale NM, Sharma SC (2010) Heterocoagulation moulding of alumina powder suspensions prepared using citrate dispersant. Ceram Int 36:1–8

    Google Scholar 

  83. Tanurdjaja S, Tallon C, Scales PJ, Franks GV (2011) Influence of dispersant size on rheology of non-aqueous ceramic particle suspensions. Adv Powder Technol 22:476–481

    Google Scholar 

  84. Bernhardt C (1988) Preparation of suspensions for particle-size analysis—methodical recommendations, liquids and dispersing agents. Adv Colloid Inter Sci 29:79–139

    Google Scholar 

  85. Balasubramanian S, Shanefield DJ, Niesz DE (2002) Effect of externally applied plasticizer on compaction behavior of spray-dried powders. J Am Ceram Soc 85:749–754

    Google Scholar 

  86. Ma LG, Huang Y, Yang JL, Le HR, Sun Y (2005) Effect of plasticizer on the cracking of ceramic green bodies in gelcasting. J Mater Sci 40:4947–4949

    Google Scholar 

  87. Sikora M, Schilling CH, Tomasik P, Li CP (2002) Dextrin plasticizers for aqueous colloidal processing of alumina. J Eur Ceram Soc 22:625–628

    Google Scholar 

  88. Ewsuk KG, Arguello JG, Bencoe DN, Ellerby DT, Glass SJ, Zeuch DH et al (2003) Characterizing powders for dry pressing, sintering. Am Ceram Soc Bull 82:41–47

    Google Scholar 

  89. Glass SJ, Ewsuk KG (1997) Ceramic powder compaction. MRS Bull 22:24–28

    Google Scholar 

  90. Sun L, Oguz B, Kwon P (2009) Powder mixing effect on the compaction capabilities of ceramic powders. Powder Technol 195:227–234

    Google Scholar 

  91. Takahashi H, Shinohara N, Okumiya M, Uematsu K, Junichiro T, Iwamoto Y et al (1995) Influence of slurry flocculation on the character and compaction of spray-dried silicon-nitride granules. J Am Ceram Soc 78:903–908

    Google Scholar 

  92. Takahashi H, Shinohara N, Uematsu K (1996) Influence of spray-dry slurry flocculation on the structure of sintered silicon nitride. J Ceram Soc Jpn 104:59–62

    Google Scholar 

  93. Uematsu K (1996) Immersion microscopy for detailed characterization of defects in ceramic powders and green bodies. Powder Technol 88:291–298

    Google Scholar 

  94. Funk JE, Dinger DR (1988) Slip control using particle-size analysis and specific surface-area. Am Ceram Soc Bull 67:890–894

    Google Scholar 

  95. Funk JE, Dinger DR (1994) Particle-size control for high-solid castable refractories. Am Ceram Soc Bull 73:66–69

    Google Scholar 

  96. Bortzmeyer D (1992) Modeling ceramic powder compaction. Powder Technol 70:131–139

    Google Scholar 

  97. Carlone P, Palazzo GS (2006) Computational modeling of the cold compaction of ceramic powders. Int Appl Mech 42:1195–1201

    Google Scholar 

  98. Kim HS, Oh ST, Lee JS (2002) Constitutive model for cold compaction of ceramic powder. J Am Ceram Soc 85:2137–2138

    Google Scholar 

  99. Schwartz EG (1965) Weinstei.As. Model for compaction of ceramic powders. J Am Ceram Soc 48:346–350

    Google Scholar 

  100. Aydin I, Briscoe BJ, Ozkan N (1997) Modeling of powder compaction: a review. MRS Bull 22:45–51

    Google Scholar 

  101. Aydin I, Briscoe BJ, Sanliturk KY (1996) The internal form of compacted ceramic components: a comparison of a finite element modelling with experiment. Powder Technol 89:239–254

    Google Scholar 

  102. Strijbos S (1977) Powder-wall friction—effects of orientation of wall grooves and wall lubricants. Powder Technol 18:209–214

    Google Scholar 

  103. Strijbos S, Vangroenou AB (1979) Recent progress in understanding die compaction of powders. J Am Ceram Soc 62:57–59

    Google Scholar 

  104. Vangroenou AB (1978) Pressing of ceramic powders—review of recent work. Powder Metall Int 10:206–211

    Google Scholar 

  105. Vangroenou AB (1981) Compaction of ceramic powders. Powder Technol 28:221–228

    Google Scholar 

  106. Lannutti JJ (1997) Characterization and control of compact microstructure. MRS Bull 22:38–44

    Google Scholar 

  107. Lannutti JJ, Deis TA, Kong CM, Phillips DH (1997) Density gradient evolution during dry pressing. Am Ceram Soc Bull 76:53–58

    Google Scholar 

  108. Cottrino S, Jorand Y, Maire E, Adrien J (2013) Characterization by X-ray tomography of granulated alumina powder during in situ die compaction. Mater Charact 81:111–123

    Google Scholar 

  109. Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J et al (2009) In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particles suspensions. Part II: steady state. J Am Ceram Soc 92:2497–2503

    Google Scholar 

  110. Hondo T, Kato Z, Tanaka S (2014) Enhancing the contrast of low-density packing regions in images of ceramic powder compacts using a contrast agent for micro-X-ray computed tomography. J Ceram Soc Jpn 122:574–576

    Google Scholar 

  111. Moritz K, Moritz T (2010) ZrO2 ceramics with aligned pore structure by EPD and their characterisation by X-ray computed tomography. J Eur Ceram Soc 30:1203–1209

    Google Scholar 

  112. Rousseau B, Gomart H, Zanghi D, Bernard D, Stampanoni M (2010) Synchrotron x-ray mu-tomography to model the thermal radiative properties of an opaque ceramic coating at T = 1000 K. J Mater Res 25:1890–1897

    Google Scholar 

  113. Xu F, Hu XF, Miao H, Zhao JH (2010) In situ investigation of ceramic sintering by synchrotron radiation X-ray computed tomography. Opt Lasers Eng 48:1082–1088

    Google Scholar 

  114. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59:1–43

    Google Scholar 

  115. Carter CB, Norton MG (2007) Ceramics materials: science and engineering. Springer, Berlin

    Google Scholar 

  116. Tsetsekou A, Agrafiotis C, Milias A (2001) Optimization of the rheological properties of alumina slurries for ceramic processing applications—Part I: slip casting. J Eur Ceram Soc 21:363–373

    Google Scholar 

  117. Adcock DS, McDowall IC (1957) The mechanism of filter pressing and slip casting. J Am Ceram Soc 40:355–362

    Google Scholar 

  118. Fennelly TJ, Reed JS (1972) Mechanics of pressure slip casting. J Am Ceram Soc 55:264–268

    Google Scholar 

  119. Kovac M, Havrda J, Oujiri F (1993) A model of slip casting. Ceram-Silik 37:67–72

    Google Scholar 

  120. Tiller FM, Hsyung NB (1991) Theory of filtration of ceramics, 2. Slip casting on radial surfaces. J Am Ceram Soc 74:210–218

    Google Scholar 

  121. Tiller FM, Tsai CD (1986) Theory of filtration of ceramics, 1. Slip casting. J Am Ceram Soc 69:882–887

    Google Scholar 

  122. Bergstrom L, Schilling CH, Aksay IA (1992) Consolidation behavior of flocculated allumina suspensions. J Am Ceram Soc 75:3305–3314

    Google Scholar 

  123. Takao Y, Hotta T, Nakahira K, Naito M, Shinohara N, Okumiya M et al (2000) Processing defects and their relevance to strength in alumina ceramics made by slip casting. J Eur Ceram Soc 20:389–395

    Google Scholar 

  124. Ganesh I (2011) Aqueous slip casting of MgAl2O4 spinel powder. Bull Mater Sci 34:327–335

    Google Scholar 

  125. Ganesh I, Sundararajan G, Ferreira JMF (2011) Aqueous slip casting and hydrolysis assisted solidification of MgAl2O4 spinel ceramics. Adv Appl Ceram 110:63–69

    Google Scholar 

  126. Sommer F, Kern F, El-Maghraby HF, Abou El-Ezz M, Awaad M, Gadow R et al (2012) Effect of preparation route on the properties of slip-casted Al2O3/YAG composites. Ceram Int 38:4819–4826

    Google Scholar 

  127. Kaminskii AA, Kravchenko VB, Kopylov YL, Bagayev SN, Shemet VV, Komarov AA et al (2007) Novel polycrystalline laser material: Nd3+:Y3Al5O12 ceramics fabricated by the high-pressure colloidal slip casting (HPCSC) method. Physica Status Solidi A—Appl Mater Sci 204:2411–2415

    Google Scholar 

  128. Li X, Li Q (2008) YAG ceramic processed by slip casting via aqueous slurries. Ceram Int 34:397–401

    Google Scholar 

  129. Mouzon J, Glowacki E, Oden M (2008) Comparison between slip casting and uniaxial pressing for the fabrication of translucent yttria ceramics. J Mater Sci 43:2849–2856

    Google Scholar 

  130. Olhero SM, Miranzo P, Ferreira JMF (2006) AlN ceramics processed by aqueous slip casting. J Mater Res 21:2460–2469

    Google Scholar 

  131. Promdej C, Areeraksakul S, Pavarajarn V, Wada S, Wasanapiarnpong T, Charinpanitkul T (2008) Preparation of translucent alumina ceramic specimen using slip casting method. J Ceram Soc Jpn 116:409–413

    Google Scholar 

  132. Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58:63–112

    Google Scholar 

  133. Boulesteix R, Epherre R, Noyau S, Vandenhende M, Maitre A, Salle C et al (2014) Highly transparent Nd:Lu2O3 ceramics obtained by coupling slip casting and spark plasma sintering. Scripta Mater 75:54–57

    Google Scholar 

  134. Ramavath P, Biswas P, Rajeswari K, Suresh MB, Johnson R, Padmanabham G et al (2014) Optical and mechanical properties of compaction and slip cast processed transparent polycrystalline spinel ceramics. Ceram Int 40:5575–5581

    Google Scholar 

  135. Zhou J, Pan YB, Li J, Zhang WX, Kou HM, Liu WB et al (2011) Fabrication of YAG transparent ceramics using slip casting with ethanol. J Inorg Mater 26:254–256

    Google Scholar 

  136. Ji XB, Deng JG, Kang B, Huang H, Wang X, Jing W et al (2013) Fabrication of transparent neodymium-doped yttrium aluminum garnet ceramics by high solid loading suspensions. Ceram Int 39:7921–7926

    Google Scholar 

  137. Jin LL, Zhou GH, Shimai SZ, Zhang JA, Wang SW (2010) ZrO2-doped Y2O3 transparent ceramics via slip casting and vacuum sintering. J Eur Ceram Soc 30:2139–2143

    Google Scholar 

  138. Appiagyei KA, Messing GL, Dumm JQ (2008) Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics. Ceram Int 34:1309–1313

    Google Scholar 

  139. Mao XJ, Wang SW, Shimai S, Guo JK (2008) Transparent polycrystalline alumina ceramics with orientated optical axes. J Am Ceram Soc 91:3431–3433

    Google Scholar 

  140. Zhang L, Vleugels J, Van der Biest O (2010) Slip casting of alumina suspensions in a strong magnetic field. J Am Ceram Soc 93:3148–3152

    Google Scholar 

  141. Yi HL, Mao XJ, Zhou GH, Chen S, Zou XQ, Wang SW et al (2012) Crystal plane evolution of grain oriented alumina ceramics with high transparency. Ceram Int 38:5557–5561

    Google Scholar 

  142. Kopylov YL, Kravchenko VB, Bagayev SN, Shemet VV, Komarov AA, Karban OV et al (2009) Development of Nd3+:Y3Al5O12 laser ceramics by high-pressure colloidal slip casting (HPCSC) method. Opt Mater 31:707–710

    Google Scholar 

  143. Denker SP, Meyer J (1966) Pressure casting refractory ceramics. Rev Sci Instrum 37:679–680

    Google Scholar 

  144. Fennelly TJ, Reed JS (1972) Compression permeability of Al2O3 cakes formed by pressure slip casting. J Am Ceram Soc 55:381–383

    Google Scholar 

  145. Lange FF, Miller KT (1987) Pressure filtration—consolidation kinetics and mechanics. Am Ceram Soc Bull 66:1498–1504

    Google Scholar 

  146. Cho K-S, Lee SY (2013) Fabrication of large-size alumina by pressure-vacuum hybrid slip casting. J Korean Ceram Soc 50:396–401

    Google Scholar 

  147. Maleksaeedi S, Paydar MH, Saadat S, Ahmadi H (2008) In situ vibration enhanced pressure slip casting of submicrometer alumina powders. J Eur Ceram Soc 28:3059–3064

    Google Scholar 

  148. Betz T, Rieb W, Lehmann J, Ziegler G (1997) Important parameters in pressure casting of Al2O3. CFI-Ceramic Forum International 74:101–105

    Google Scholar 

  149. Schaffoener S, Aneziris CG (2012) Pressure slip casting of coarse grain oxide ceramics. Ceram Int 38:417–422

    Google Scholar 

  150. Hotza D, Greil P (1995) Aqueous tape casting of ceramic powders. Mater Sci Eng A—Struct Mater Prop Microstructure Process 202:206–217

    Google Scholar 

  151. Bohnleinmauss J, Sigmund W, Wegner G, Meyer WH, Hessel F, Seitz K et al (1992) The function of polymers in the tape casting of alumina. Adv Mater 4:73–81

    Google Scholar 

  152. Chou YT, Ko YT, Yan MF (1987) Fluid-flow model for ceramic tape casting. J Am Ceram Soc 70:C280–C282

    Google Scholar 

  153. Heinrich J (1986) Tape casting of oxidic and nonoxidic ceramic powders. Powder Metall Int 18:229–232

    Google Scholar 

  154. Huang XY, Liu CY, Gong HQ (1997) A viscoplastic flow modeling of ceramic tape casting. Mater Manuf Process 12:935–943

    Google Scholar 

  155. Tok AIY, Boey FYC, Lam YC (2000) Non-Newtonian fluid flow model for ceramic tape casting. Mater Sci Eng A—Struct Mater Prop Microstructure and Process 280:282–288

    Google Scholar 

  156. Chang YF, Poterala S, Yener D, Messing GL (2013) Fabrication of highly textured fine-grained α-alumina by templated grain growth of nanoscale precursors. J Am Ceram Soc 96:1390–1397

    Google Scholar 

  157. Hong SH, Messing GL (1999) Development of textured mullite by templated grain growth. J Am Ceram Soc 82:867–872

    Google Scholar 

  158. Ma S, Fuh JYH, Zhang YF, Lu L (2010) Synthesis of anisotropic lead titanate powders for templated grain growth of textured piezoelectric ceramics. Surf Rev Lett 17:159–164

    Google Scholar 

  159. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B et al (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State Mater Sci 29:45–96

    Google Scholar 

  160. Zeng YP, Zimmermann A, Zhou LJ, Aldinger F (2004) Tape casting of PLZST tapes via aqueous slurries. J Eur Ceram Soc 24:253–258

    Google Scholar 

  161. Yang Y, Wu YQ (2014) Tape-casted transparent alumina ceramic wafers. J Mater Res 29:2312–2317

    Google Scholar 

  162. Ba XW, Li J, Zeng YP, Pan YB, Jiang BX, Liu WB et al (2013) Transparent Y3Al5O12 ceramics produced by an aqueous tape casting method. Ceram Int 39:4639–4643

    Google Scholar 

  163. Tang F, Cao YG, Huang JQ, Guo W, Liu HG, Huang QF et al (2012) Multilayer YAG/RE:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method. J Eur Ceram Soc 32:3995–4002

    Google Scholar 

  164. Ba XW, Li J, Pan YB, Liu J, Guo JK (2013) Preparation of composite YAG transparent ceramics by aqueous tape casting route. Rare Metal Mater Eng 42:234–237

    Google Scholar 

  165. Tang F, Lin Y, Wang WC, Yuan XY, Chen J, Huang JQ et al (2014) High efficient Nd:YAG laser ceramics fabricated by dry pressing and tape casting. J Alloy Compd 617:845–849

    Google Scholar 

  166. Ba XW, Li J, Pan YB, Zeng YP, Kou HM, Liu WB et al (2013) Comparison of aqueous- and non-aqueous-based tape casting for preparing YAG transparent ceramics. J Alloy Compd 577:228–231

    Google Scholar 

  167. Janney MA, Omatete OO, Walls CA, Nunn SD, Ogle RJ, Westmoreland G (1998) Development of low-toxicity gelcasting systems. J Am Ceram Soc 81:581–591

    Google Scholar 

  168. Omatete OO, Janney MA, Nunn SD (1997) Gelcasting: from laboratory development toward industrial production. J Eur Ceram Soc 17:407–413

    Google Scholar 

  169. Omatete OO, Janney MA, Strehlow RA (1991) Gelcasting - A new ceramic forming process. Am Ceram Soc Bull 70:1641

    Google Scholar 

  170. Young AC, Omatete OO, Janney MA, Menchhofer PA (1991) Gelcasting of alumina. J Am Ceram Soc 74:612–618

    Google Scholar 

  171. Kokabi M, Pirooz A, Haghighi MN (1998) Gel-casting of engineering ceramics. Iran Polym J 7:169–175

    Google Scholar 

  172. Xiang JH, Huang Y, Xie ZP (2002) Study of gel-tape-casting process of ceramic materials. Mater Sci Eng A—Struct Mater Prop Microstructure Process 323:336–341

    Google Scholar 

  173. Xie ZP, Ma CL, Huang Y, Xiang JH (2002) Gel tape casting ceramic sheets. Am Ceram Soc Bull 81:33–37

    Google Scholar 

  174. Mao XJ, Shimai S, Dong MJ, Wang SW (2008) Gelcasting and pressureless sintering of translucent alumina ceramics. J Am Ceram Soc 91:1700–1702

    Google Scholar 

  175. Sun Y, Shimai S, Peng X, Zhou GH, Kamiya H, Wang SW (2014) Fabrication of transparent Y2O3 ceramics via aqueous gelcasting. Ceram Int 40:8841–8845

    Google Scholar 

  176. Qin XP, Zhou GH, Yang Y, Zhang J, Shu X, Shimai S et al (2014) Gelcasting of transparent YAG ceramics by a new gelling system. Ceram Int 40:12745–12750

    Google Scholar 

  177. Braun A, Wolff M, Falk G, Clasen R (2005) Transparent alumina ceramics with sub-microstructure by means of electrophoretic deposition. In: Brito ME, Filip P, Lewinsohn C, Sayir A, Opeka M, Mullins MW (eds) Developments in advanced ceramics and composites. American Ceramic Society, Westerville, pp 97–104

    Google Scholar 

  178. Boccaccini AR, Ferrari B (2014) Electrophoretic deposition of ceramic materials. Adv Appl Ceram 113:1–2

    Google Scholar 

  179. Hadraba H, Drdlik D, Chlup Z, Maca K, Dlouhy I, Cihlar J (2013) Layered ceramic composites via control of electrophoretic deposition kinetics. J Eur Ceram Soc 33:2305–2312

    Google Scholar 

  180. Olevsky EA, Wang X, Maximenko A, Meyers MA (2007) Fabrication of net-shape functionally graded composites by electrophoretic deposition and sintering: modeling and experimentation. J Am Ceram Soc 90:3047–3056

    Google Scholar 

  181. Sarkar P, Nicholson PS (1996) Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J Am Ceram Soc 79:1987–2002

    Google Scholar 

  182. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61

    Google Scholar 

  183. Corni I, Ryan MP, Boccaccini AR (2008) Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc 28:1353–1367

    Google Scholar 

  184. Braun A, Falk G, Clasen R (2006) Transparent polycrystalline alumina ceramic with sub-micrometre microstructure by means of electrophoretic deposition. Materialwiss Werkstofftech 37:293–297

    Google Scholar 

  185. Bredol M, Micior J, Klemme S (2014) Electrophoretic deposition of alumina, yttria, yttrium aluminium garnet and lutetium aluminium garnet. J Mater Sci 49:6975–6985

    Google Scholar 

  186. Bredol M, Micior J (2013) Preparation and characterization of nanodispersions of yttria, yttrium aluminium garnet and lutetium aluminium garnet. J Colloid Inter Sci 402:27–33

    Google Scholar 

  187. Leo S, Tallon C, Stone N, Franks GV (2014) Near-net-shaping methods for ceramic elements of (body) armor systemsl. J Am Ceram Soc 97:3013–3033

    Google Scholar 

  188. Nieh TG, Wadsworth J (1998) Fine-structure superplasticity in materials. J Chin Inst Eng 21:659–689

    Google Scholar 

  189. Li MY, Tang L, Landers RG, Leu MC (2013) Extrusion process modeling for aqueous-based ceramic pastes-Part 2: experimental verification. J Manuf Sci Eng—Trans ASME 135:051009

    Google Scholar 

  190. Li MY, Tang L, Landers RG, Leu MC (2013) Extrusion process modeling for aqueous-based ceramic pastes-Part 1: constitutive model. J Manuf Sci Eng—Trans ASME 135:051008

    Google Scholar 

  191. Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30:1–10

    Google Scholar 

  192. Mason MS, Huang T, Landers RG, Leu MC, Hilmas GE (2009) Aqueous-based extrusion of high solids loading ceramic pastes: process modeling and control. J Mater Process Technol 209:2946–2957

    Google Scholar 

  193. Scheying G, Wuhrl I, Eisele U, Riedel R (2004) Monoclinic zirconia bodies by thermoplastic ceramic extrusion. J Am Ceram Soc 87:358–364

    Google Scholar 

  194. Wight JF, Reed JS (2001) Polymer-plasticized ceramic extrusion, Part 2. Am Ceram Soc Bull 80:73–76

    Google Scholar 

  195. Wright JF, Reed JS (2001) Polymer-plasticized ceramic extrusion, part 1. Am Ceram Soc Bull 80:31–35

    Google Scholar 

  196. Schuetz JE (1986) Methylcellulose polymers as binders for extrusion of ceramics. Am Ceram Soc Bull 65:1556–1559

    Google Scholar 

  197. Reiner M (1926) Flow of elastic liquid by means of a capillary. Article on the theory of the viscosity measurements. Kolloid-Zeitschrift 39:80–87

    Google Scholar 

  198. Robinson GC (1952) Limitations imposed by raw mateials on firing schedules. J Am Ceram Soc 35:1–5

    Google Scholar 

  199. Van Hoy C, Barda A, Griffith M, Halloran JW (1998) Microfabrication of ceramics by co-extrusion. J Am Ceram Soc 81:152–158

    Google Scholar 

  200. Powell J, Assabumrungrat S, Blackburn S (2013) Design of ceramic paste formulations for co-extrusion. Powder Technol 245:21–27

    Google Scholar 

  201. Kryachek VM (2004) Injection moulding (review). Powder Metall Met Ceram 43:336–348

    Google Scholar 

  202. Medvedovski E, Peltsman M (2012) Low pressure injection moulding mass production technology of complex shape advanced ceramic components. Adv Appl Ceram 111:333–344

    Google Scholar 

  203. Rajabi J, Muhamad N, Sulong AB (2012) Effect of nano-sized powders on powder injection molding: a review. Microsyst Technol—Micro Nanosyst Inf Storage Process Syst 18:1941–1961

    Google Scholar 

  204. German RM (2013) Progress in titanium metal powder injection molding. Materials 6:3641–3662

    Google Scholar 

  205. German RM, Hens KF, Lin STP (1991) Key issues in powder injection-molding. Am Ceram Soc Bull 70:1294–1302

    Google Scholar 

  206. Hens KF, Lee DY, German RM (1991) Processing conditions and tooling for powder injection-molding. Int J Powder Metall 27:141

    Google Scholar 

  207. Zhang T, Evans JRG (1993) The solidification of large sections in ceramic injection molding, 2: modulated pressure molding. J Mater Res 8:345–351

    Google Scholar 

  208. Zhang T, Evans JRG (1993) The solidification of large sections in ceramic injection molding, 1: conventional molding. J Mater Res 8:187–194

    Google Scholar 

  209. Chong JS, Christia EB, Baer AD (1971) Rheology of concentrated suspensions. J Appl Polym Sci 15:2007–2021

    Google Scholar 

  210. Nagaoka T, Sato K, Hotta Y, Tsugoshi T, Watari K (2007) Extrusion of alumina ceramics with hydraulic alumina without organic additives. J Ceram Soc Jpn 115:191–194

    Google Scholar 

  211. Nagaoka T, Duran C, Isobe T, Hotta Y, Watari K (2007) Hydraulic alumina binder for extrusion of alumina ceramics. J Am Ceram Soc 90:3998–4001

    Google Scholar 

  212. Wegmann M, Gut B, Berroth K (1998) Extrusion of polycrystalline ceramic fibers. CFI-Ceramic Forum Int 75:35–37

    Google Scholar 

  213. Yu ZY, Huang Y, Wang CG, Ouyang S (2003) Freeform fabrication of Al2O3 ceramics by extrusion gelation. Rare Metal Mater Eng 32:167–170

    Google Scholar 

  214. Mannschatz A, Mueller-Koehn A, Moritz T, Klimke J, Krell A, Michaelis A (2013) Powder injection molding of submicron grained translucent alumina. CFI-Ceramic Forum Int 90:E39–E43

    Google Scholar 

  215. Liu W, Bo TZ, Xie ZP, Wu Y, Yang XF (2011) Fabrication of injection moulded translucent alumina ceramics via pressureless sintering. Adv Appl Ceram 110:251–254

    Google Scholar 

  216. Liu W, Xie Z (2014) Pressureless sintering behavior of injection molded alumina ceramics. Sci Sinter 46:3–13

    Google Scholar 

  217. el Ezz MA, El-Maghraby HF, Kern F, Sommer F, Awaad M, Gadow R et al (2013) Ceramic injection moulding of alumina-10 vol.-%YAG composites. Adv Appl Ceram 112:125–130

    Google Scholar 

  218. Taylor NJ, Laine RM (2014) Extrusion of YAG tubes shows that bottom-up processing is not always optimal. Adv Funct Mater 24:1125–1132

    Google Scholar 

  219. Baranwal R, Villar MP, Garcia R, Laine RM (2001) Flame spray pyrolysis of precursors as a route to nano-mullite powder: powder characterization and sintering behavior. J Am Ceram Soc 84:951–961

    Google Scholar 

  220. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829

    Google Scholar 

  221. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62:756–765

    Google Scholar 

  222. Guo JJ, Lewis JA (1999) Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions. J Am Ceram Soc 82:2345–2358

    Google Scholar 

  223. Lograsso BK, Bose A, Carpenter B, Chung C, Hens K, Lee D et al (1988) Baseline system for powder injection-molding: iron-polyethylene wax. J Metals 40:10–11

    Google Scholar 

  224. Lograsso BK, Bose A, Carpenter BJ, Chung CI, Hens KF, Lee D et al (1989) Injection molding of carbonyl iron with polyethylene wax. Int J Powder Metall 25:337–348

    Google Scholar 

  225. German RM, Bose A (1997) Injection molding of metals and ceramics. Metal Powder Industries Federation, Princeton

    Google Scholar 

  226. Uematsu K, Miyashita M, Kim JY, Kato Z, Uchida N (1991) Effect of forming pressure on the internal structure of alumina green bodies examined with immersion liquid technique. J Am Ceram Soc 74:2170–2174

    Google Scholar 

  227. Yang S, Fang W, Chi Y, Khan DF, Zhang R, Qu X (2014) Bulk observation of aluminum green compacts by way of X-ray tomography. Nucl Instr Methods Phys Res Sect B—Beam Inter Mater Atoms 319:146–153

    Google Scholar 

  228. Tanner BK (1977) Crystal assessment by X-ray topography using synchrotron radiation. Prog Cryst Growth Charact Mater 1:23–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, L.B. et al. (2015). Powder Characterization and Compaction. In: Transparent Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18956-7_4

Download citation

Publish with us

Policies and ethics