High Energy Densities in Planets and Stars

  • Vladimir E. Fortov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 216)


In this chapter we consider—from the standpoint of high energy density physics—the processes and phenomena that take place inside cosmic objects compressed by gravitational forces to compact dimensions (planets, stars, etc.). Outlined in the first section are data on the planets of the Solar System, exoplanets, and low-mass stars. In the next section we consider at length the evolution of stellar objects in relation to their mass. Our discussion is completed with objects with superextreme states: neutron and “strange” stars, black holes, magnetars, wormholes, etc.


Black Hole Neutron Star Event Horizon Accretion Disk White Dwarf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abel, T.: The first stars, as seen by supercomputers. Phys. Today 64(4), 51–56 (2011)CrossRefGoogle Scholar
  2. 2.
    Allard, F., Hauschildt, P.H., Alexander, D.R., Starrfield, S.: Model atmospheres of very low mass stars and brown dwarfs. Annu. Rev. Astron. Astrophys. 35, 137–177 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59(8), 086004 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 36(5), 337–364 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics research during nuclear explosions. Phys. Usp. 49(4), 432 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Balega, Y.Y.: Brown dwarfs: substars without nuclear reactions. Phys. Usp. 45(8), 883–886 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Baturin, V.A., Mironova, I.V., Surdin, V.G.: Fizika i jevoljucija zvezd (Physics and evolution of stars). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 120. Vek 2, Fryazino (2007)Google Scholar
  8. 8.
    Bezkrovniy, V., Filinov, V.S., Kremp, D., et al.: Monte Carlo results for the hydrogen Hugoniot. Phys. Rev. E 70(5), 057401 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Bleicher, M.: How to create black holes on Earth. Eur. J. Phys. 28(3), 509–516 (2007)CrossRefGoogle Scholar
  10. 10.
    Burrows, A., Hubbard, W.B., Lunine, J.I., Liebert, J.: The theory of brown dwarfs and extrasolar giant planets. Rev. Mod. Phys. 73(3), 719–765 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Chabrier, G., Baraffe, I.: Theory of low mass stars and substellar objects. Annu. Rev. Astron. Astrophys. 38, 337–377 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Cherepashchuk, A.M.: Masses of black holes in binary stellar systems. Phys. Usp. 39(8), 759 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Cherepashchuk, A.M.: Chernye dyry v dvojnyh zvezdnyh sistemah (Black holes in double star systems). In: Soifer, V.N. (ed.) Sovremennoe estestvoznanie. Entsiklopediya (Modern Natural Science. Encyclopedia), vol. 4, p. 228. Magistr-Press, Moscow (2000)Google Scholar
  14. 14.
    Cherepashchuk, A.M.: Chernye dyry vo Vselennoj (Black holes in the Universe). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 219. Vek 2, Fryazino (2007)Google Scholar
  15. 15.
    Cherepashchuk, A.M., Chernin, A.D.: Vselennaja, zhizn’, chernye dyry (The Universe, Life, Black Holes). Vek 2, Fryazino (2004)Google Scholar
  16. 16.
    Chernin, A.D.: Cosmic vacuum. Phys. Usp. 44(11), 1099 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Chernin, A.D.: Dark energy and universal antigravitation. Phys. Usp. 51(3), 253 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Disdier, L., Garconnet, J.P., Malka, G., Miquel, J.L.: Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys. Rev. Lett. 82(7), 1454–1457 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Drake, R.P.: High-Energy-Density Physics. Springer, Berlin, Heidelberg (2006)Google Scholar
  20. 20.
    Dubin, D.H.E., O’Nail, T.M.: Trapped nonneutral plasmas, liquids and crystals (the thermal equilibrium states). Rev. Mod. Phys. 71, 87 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Efremov, Y.N.: Zvezdnye ostrova (Star Islands). Vek 2, Fryazino (2005)Google Scholar
  22. 22.
    Faber, T.E.: Fluid Dynamics for Physicists. Cambridge University Press, Cambridge (1977)Google Scholar
  23. 23.
    Filinov, V.S., Bonitz, M., Levashov, P., et al.: Plasma phase transition in dense hydrogen and electron–hole plasmas. J. Phys. A 36(22), 6069–6076 (2003)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Filinov, V.S., Levashov, P.R., Bonitz, M., Fortov, V.E.: Calculation of the shock Hugoniot of deuterium at pressures above 1 Mbar by the path-integral Monte Carlo method. Plasma Phys. Rep. 31(8), 700–704 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma). Nauka, Moscow (2000)Google Scholar
  26. 26.
    Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)Google Scholar
  27. 27.
    Fortov, V.E. (ed.): Explosive-Driven Generators of Powerful Electrical Current Pulses. Cambridge International Science, Cambridge (2007)Google Scholar
  28. 28.
    Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 50(4), 333 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Fortov, V.E., Gnedin, Y.N., Ivanov, M.F., et al.: Collision of comet Shoemaker–Levy 9 with Jupiter: what did we see. Phys. Usp. 39(4), 363 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Fortov, V.E., Ternovoi, V.Y., Zhernokletov, M.V., et al.: Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures. J. Exp. Theor. Phys. 97(2), 259–278 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: current status, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  33. 33.
    Fortov, V.E., Ilkaev, R.I., Arinin, V.A., et al.: Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99(18), 185001 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Friman, B., Höhne, C., Knoll, J., et al. (eds.): The CBM Physics Book. Lecture Notes in Physics, vol. 814, 1st edn. Springer, Berlin (2010)Google Scholar
  35. 35.
    Gelliot, T.: Understanding the evolution of giant planets: importance of equation of state. Presented at the International Workshop on Warm Dense Matter, University of Rostock, Germany (2007)Google Scholar
  36. 36.
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)CrossRefGoogle Scholar
  37. 37.
    Glendenning, N.K.: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, 2nd edn. Springer, New York (2000)CrossRefGoogle Scholar
  38. 38.
    Gorbunov, D.S., Rubakov, V.A.: Vvedenie v teoriyu rannei Vselennoi. Kosmologicheskie vozmushcheniya. Inflyatsionnaya teoriya, vol. 2. Krasand, Moscow (2010)Google Scholar
  39. 39.
    Grib, A.A.: Osnovnye predstavleniya sovremennoi kosmologii (The Basic Representations of Modern Cosmology). FizMatLit, Moscow (2008)Google Scholar
  40. 40.
    Haensel, P., Potekhin, A., Yakovlev, D.: Neutron Stars 1: Equation of State and Structure. Springer, New York (2007)CrossRefGoogle Scholar
  41. 41.
    Hands, S.: The phase diagram of QCD. Contemp. Phys. 42(4), 209–225 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    Hawke, P.S., Burgess, T.J., Duerre, D.E., et al.: Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41(14), 994–997 (1978)ADSCrossRefGoogle Scholar
  43. 43.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Hawking, S.W.: A Brief History of Time: From the Big Bang to Black Holes. Bantam Books, Toronto (1988)Google Scholar
  45. 45.
    Ichimaru, S.: Nuclear fusion in dense plasmas. Rev. Mod. Phys. 65(2), 255–299 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    Istomin, Y.N.: Electron–positron plasma generation in the magnetospheres of neutron stars. Phys. Usp. 51(8), 844 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Ivanova, L.N., Imshennik, V.S., Chechotkin, V.M.: Pulsation regime of the thermonuclear explosion of a star’s dense carbon core. Astrophys. Space Sci. 31(2), 497–514 (1974)ADSCrossRefGoogle Scholar
  48. 48.
    Jeffries, C.D., Keldysh, L.V. (eds.): Electron–Hole Droplets in Semiconductors. North-Holland, Amsterdam (1983)Google Scholar
  49. 49.
    Kadomtsev, B.B.: Selected Works [in Russian], vol. 1. Nauka, Moscow (2003)Google Scholar
  50. 50.
    Kaplan, S.A.: The Physics of Stars. Wiley, Chichester (1982). [Original in Russian: Fizika Zvezd, 2nd edn. Nauka, Moscow (1970)]Google Scholar
  51. 51.
    Kardashev, N.S., Novikov, I.D., Shatskii, A.A.: Magnetic tunnels (wormholes) in astrophysics. Astron. Rep. 50(8), 601–611 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    Karnakov, B.M., Mur, V.D., Popov, V.S.: Contribution to the theory of Lorentzian ionization. JETP Lett. 65(5), 405–411 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    Kifonidis, K., Plewa, T., Janka, H.T., Müller, E.: Nucleosynthesis and clump formation in a core-collapse supernova. Astrophys. J. Lett. 531, L123–L126 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressures and temperatures). Sov. Phys. Usp. 14(4), 512–523 (1972)ADSCrossRefGoogle Scholar
  55. 55.
    Klumov, B.A., Kondaurov, V.I., Konyukhov, A.V., et al.: Collision of comet Shoemaker–Levi 9 with Jupiter: what shall we see? Phys. Usp. 37(6), 577 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87(22), 225501 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Koester, D.: White dwarfs: Recent developments. Astron. Astrophys. Rev. 11(1), 33–66 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    Kouveliotou, C., Duncan, R.C., Thompson, C.: Intensely magnetic neutron stars alter the quantum physics of their surroundings. Sci. Am. 288(2), 35 (2003)CrossRefGoogle Scholar
  59. 59.
    Levin, A.: Kosmicheskie bomby (Space bombs). Populyarnaya mehanika (Pop. Mech.) 8(58), 38 (2007)Google Scholar
  60. 60.
    Levin, A.: Oni byli pervymi: samye starye zvezdy (They were the first: the oldest stars). Populyarnaya Mekhanika 103(5), 42–46 (2011)Google Scholar
  61. 61.
    Levin, A.: Vozrast mirozdaniya: slushaem pul’s vselennoi (The age of the universe: listening to the pulse of the universe). Populyarnaya Mekhanika 115(5), 54–60 (2012)Google Scholar
  62. 62.
    Lobo, F.S.N.: Phantom energy traversable wormholes. Phys. Rev. D 71(8), 084011 (2005)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Lukash, V.N., Mikheeva, E.V., Malinovsky, A.M.: Formation of the large-scale structure of the universe. Phys. Usp. 54(10), 983–1005 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    Lyutikov, M.: Magnetar giant flares and afterglows as relativistic magnetized explosions. Mon. Not. R. Astron. Soc. 367(4), 1594–1602 (2006)ADSCrossRefGoogle Scholar
  65. 65.
    Mezzacappa, A.: Ascertaining the core collapse supernova mechanism: the state of the art and the road ahead. Annu. Rev. Nucl. Part. Sci. 55(1), 467–515 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    Miller, S., Tennyson, J., Jones, H.R.A., Longmore, A.J.: Computation of frequencies and linestrengths for triatomic molecules of astronomical interest. In: Jorgensen, U.G. (ed.) Molecules in the Stellar Environment. Lecture Notes in Physics, vol. 428, pp. 296–309. Springer, Berlin, Heidelberg (1994)CrossRefGoogle Scholar
  67. 67.
    Mima, K., Ohsuga, T., Takabe, H., et al.: Wakeless triple-soliton accelerator. Phys. Rev. Lett. 57(12), 1421–1424 (1986)ADSCrossRefGoogle Scholar
  68. 68.
    Murray, C.A., Wenk, R.A.: Observation of order–disorder transitions and particle trajectories in a model one-component plasma: time resolved microscopy of colloidal spheres. In: Van Horn, H.M., Ichimaru, S. (eds.) Strongly Coupled Plasma Physics, p. 367. University of Rochester Press, Rochester (1993)Google Scholar
  69. 69.
    Nadyozhin, D.K., Yudin, A.V.: The influence of Coulomb interaction on the equation of state under nuclear statistical equilibrium conditions. Astron. Lett. 31(4), 271–279 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    NASA, Hubblesite:
  71. 71.
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington (2003)Google Scholar
  72. 72.
    Nellis, W.J.: Shock compression of hydrogen and other small molecules. In: Chiarotti, G.L., Hemley, R.J., Bernasconi, M., Ulivi, L. (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 607. IOS Press, Amsterdam (2002)Google Scholar
  73. 73.
    Nellis, W.J.: Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69(5), 1479–1580 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    Novikov, I.D.: “Big Bang” echo (cosmic microwave background observations). Phys. Usp. 44(8), 817 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    Palmer, D.M., Barthelmy, S., Gehrels, N., et al.: A giant gamma-ray flare from the magnetar SGR 1806–20. Nature 434(7037), 1107–1109 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    Panasyuk, M.I.: Stranniki vselennoj ili jeho Bol’shogo Vzryva (Wanderers of the Universe or a Big Bang Echo). Vek 2, Fryazino (2005)Google Scholar
  77. 77.
    Partridge, H., Schwenke, D.W.: The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. J. Chem. Phys. 106(11), 4618–4639 (1997)ADSCrossRefGoogle Scholar
  78. 78.
    Pavlovski, A., Boriskov, G., et al: Isentropic solid hydrogen compression by ultrahigh magnetic field pressure in megabar range. In: Fowler, C., Caird, R., Erickson, D. (eds.) Megagauss Technology and Pulsed Power Applications, p. 255. Plenum Press, London (1987)Google Scholar
  79. 79.
    Pieranski, P.: Colloidal crystals. Contemp. Phys. 24(1), 25–73 (1983)ADSCrossRefGoogle Scholar
  80. 80.
    Popov, S.B., Prohomov, M.E.: Zvezdy: zhizn’ posle smerti (Stars: a life after death). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 183. Vek 2, Fryazino (2007)Google Scholar
  81. 81.
    Popov, V.S., Karnakov, B.M., Mur, V.D.: Quasiclassical theory of atomic ionization in electric and magnetic fields. Phys. Lett. A 229(5), 306–312 (1997)ADSCrossRefGoogle Scholar
  82. 82.
    Rebolo, R., Martin, E.L., Zapatero Osorio, M.R. (eds.): Brown dwarfs and extrasolar planets. In: Astronomical Society of the Pacific Conference Series, vol. 134. ASP, San Francisco (1998)Google Scholar
  83. 83.
    Richer, J., Michaud, G., Rogers, F., et al.: Radiative accelerations for evolutionary model calculations. Astrophys. J. 492(2, Part 1), 833–842 (1998)Google Scholar
  84. 84.
    Rodionova, Z.F., Surdin, V.G.: Planety solnechnoj sistemy (Planets of the Solar System). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 34. Vek 2, Fryazino (2007)Google Scholar
  85. 85.
    Rubakov, V.A.: Large and infinite extra dimensions. Phys. Usp. 44(9), 871 (2001)ADSCrossRefGoogle Scholar
  86. 86.
    Rubakov, V.A.: Introduction to cosmology. PoS RTN2005, 003 (2005)Google Scholar
  87. 87.
    Rubin, S.G.: Ustroistvo nashei vselennoi (The Constitution of Our Universe). Vek 2, Fryazino (2006)Google Scholar
  88. 88.
    Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  89. 89.
    Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas 8(5), 1804–1816 (2001)ADSCrossRefGoogle Scholar
  90. 90.
    Salpeter, E.E.: Nuclear reactions in the stars. I. Proton–proton chain. Phys. Rev. 88(3), 547–553 (1952)Google Scholar
  91. 91.
    Samus’, N.N.: Peremennye zvezdy (Variable stars). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 162. Vek 2, Fryazino (2007)Google Scholar
  92. 92.
    Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848), 717–720 (2001)ADSCrossRefGoogle Scholar
  93. 93.
    Schertlera, K., Greinera, C., Schaffner-Bielichc, J., Thoma, M.: Quark phases in neutron stars and a third family of compact stars as signature for phase transitions. Nucl. Phys. A 677(1–4), 463–490 (2001)ADSGoogle Scholar
  94. 94.
    Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating of crystalline ion beams. J. Phys. B 36(3), 561–571 (2003)ADSCrossRefGoogle Scholar
  95. 95.
    Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars. Wiley, New York (1983)CrossRefGoogle Scholar
  96. 96.
    Shashkin, A.A.: Metal–insulator transitions and the effects of electron–electron interactions in two-dimensional electron systems. Phys. Usp. 48(2), 129 (2005)ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    Shatskii, A.A., Novikov, I.D., Kardashev, N.S.: A dynamic model of the wormhole and the Multiverse model. Phys. Usp. 51(5), 457 (2008)ADSCrossRefGoogle Scholar
  98. 98.
    Shevchenko, V.V.: Solnechnaja sistema (The Solar System). In: Soifer, V.N. (ed.) Sovremennoe estestvoznanie. Entsiklopediya (Modern Natural Science. Encyclopedia), vol. 4, p. 125. Magistr Press, Moscow (2000)Google Scholar
  99. 99.
    Shevchenko, V.V.: Priroda planet (The nature of planets). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 93. Vek 2, Fryazino (2007)Google Scholar
  100. 100.
    Shinkai, H., Hayward, S.A.: Fate of the first traversable wormhole: black-hole collapse or inflationary expansion. Phys. Rev. D 66(4), 044005 (2002)ADSMathSciNetCrossRefGoogle Scholar
  101. 101.
    Stefani, F., Gundrum, T., Gerbeth, G., et al.: Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97(18), 184502 (2006)ADSCrossRefGoogle Scholar
  102. 102.
    Surdin, V.G.: Rozhdenie zvezd (Star Production). Editorial URSS, Moscow (1999)Google Scholar
  103. 103.
    Surdin, V.G.: Fundamental’nye vzaimodejstvija (Fundamental Interactions). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 8. Vek 2, Fryazino (2007)Google Scholar
  104. 104.
    Surdin, V.G. (ed.): Zvezdy (The Stars), 2nd edn. Astronomiya i astrofizika (Astronomy and Astrophysics). Fizmatlit, Moscow (2009)Google Scholar
  105. 105.
    Takabe, H.: Hydrodynamic instability, integrated code, laboratory astrophysics and astrophysics. In: Hora, H., Miley, G.H. (eds.) Edward Teller Lectures: Lasers and Inertial Fusion Energy, p. 313. Imperial College Press, London (2005)Google Scholar
  106. 106.
    Trunin, R.F.: Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions. Phys. Usp. 37(11), 1123 (1994)ADSCrossRefGoogle Scholar
  107. 107.
    Vacca, J.R. (ed.): The World’s 20 Greatest Unsolved Problems. Prentice Hall PTR, Englewood Cliffs (2004)Google Scholar
  108. 108.
    Velikhov, E.P.: Stability of a plane Poiseuille flow of an ideally conducting fluid in a longitudinal magnetic field. Zh. Eksp. Teor. Fiz. 36(4), 1192–1202 (1959)Google Scholar
  109. 109.
    Velikhov, E.P.: Stability of an ideally conducting liquid flowing between rotating cylinders in a magnetic field. Zh. Eksp. Teor. Fiz. 36(5), 1398–1404 (1959)Google Scholar
  110. 110.
    Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., et al.: Shock compressibility of aluminum at p > 1 Gbar. JETP Lett. 39(2), 82 (1984)ADSGoogle Scholar
  111. 111.
    Waxman, E.: Gamma-ray bursts and collisionless shocks. Plasma Phys. Controlled Fusion 48(12B), B137–B151 (2006)CrossRefGoogle Scholar
  112. 112.
    Witten, E.: Cosmic separation of phases. Phys. Rev. D 30, 272–285 (1984)ADSCrossRefGoogle Scholar
  113. 113.
    Yakovlev, D.G.: Superfluidity in neutron stars. Phys. Usp. 44(8), 823–826 (2001)ADSCrossRefGoogle Scholar
  114. 114.
    Yakovlev, D.G., Levenfish, K.P., Shibanov, Y.A.: Cooling of neutron stars and superfluidity in their cores. Phys. Usp. 42(8), 737 (1999)ADSCrossRefGoogle Scholar
  115. 115.
    Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics). Vek 2, Fryazino (2006)Google Scholar
  116. 116.
    Zasov, A.V., Surdin, V.G.: Raznoobrazie galaktik (A variety of galaxies). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 329. Vek 2, Fryazino (2007)Google Scholar
  117. 117.
    Zubko, V., Dwek, E., Arendt, R.G.: Interstellar dust models consistent with extinction, emission, and abundance constraints. Astrophys. J. Suppl. Ser. 152(2), 211–249 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Fortov
    • 1
  1. 1.Russian Academy of Sciences Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations