Advertisement

Nuclear Transformations Under Strong Compression

  • Vladimir E. Fortov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 216)

Abstract

This chapter is dedicated to the consideration of the most “extreme states” of matter: neutron and nuclear matter. This state of matter is hardly attainable for terrestrial laboratories and therefore researchers obtain the bulk of information from observations of “extreme” cosmic objects: neutron, quark-gluon and “strange” stars, magnetars, etc. Experimental data on nuclear collisions are presented and a brief review is made of modern theoretical notions and models developed for the neutron and nuclear matter.

Keywords

Neutron Star Nuclear Matter Massive Star Quark Star Stellar Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akmal, A., Pandharipande, V.R., Ravenhall, D.G.: Equation of state of nucleon matter and neutron star structure. Phys. Rev. C 58, 1804–1828 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Alex Brown, B.: Neutron radii in nuclei and the neutron equation of state. Phys. Rev. Lett. 85, 5296–5299 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Baade, W., Zwicky, F.: Cosmic rays from super-novae. Proc. Natl. Acad. Sci. USA 20(5), 259–263 (1934)ADSCrossRefGoogle Scholar
  4. 4.
    Bahcall, J.N., Wolf, R.A.: Neutron stars. II. Neutrino-cooling and observability. Phys. Rev 140, B1452–B1466 (1965)Google Scholar
  5. 5.
    Bahcall, S., Lynn, B.W., Selipsky, S.B.: New models for neutron stars. Astrophys. J. 362, 251–255 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Balberg, S., Gal, A.: An effective equation of state for dense matter with strangeness. Nucl. Phys. A 625, 435–472 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Baldo, M., Bombaci, I., Burgio, G.F.: Microscopic nuclear equation of state with three-body forces and neutron-star structure. Astron. Astrophys. 328, 274–282 (1997)ADSGoogle Scholar
  8. 8.
    Baldo, M., Fiasconaro, A., Song, H.Q., et al.: High density symmetric nuclear matter in Bethe-Brueckner-Goldstone approach. Phys. Rev. C 65, 017303 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Baym, G., Pethick, C., Sutherland, P.: The ground state of matter at high densities: equation of state and stellar models. Astrophys. J. 170, 299 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    Baym, G., Pethick, C., Sutherland, P.: Statistical mechanics of simple coulomb systems. Astrophys. J. 170, 299–317 (1971)ADSCrossRefGoogle Scholar
  11. 11.
    Bludman, S.A., Ruderman, M.A.: Possibility of the speed of sound exceeding the speed of light in ultradense matter. Phys. Rev. 170, 1176–1184 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    Bludman, S.A., Ruderman, M.A.: Noncausality and instability in ultradense matter. Phys. Rev. D 1, 3243–3246 (1970)ADSCrossRefGoogle Scholar
  13. 13.
    Bombaci, I.: An equation of state for asymmetric nuclear matter and the structure of neutron stars. In: Bombaci, I., Bonaccorso, A., Fabrocini, A., et al. (eds.) Perspectives on Theoretical Nuclear Physics, pp. 223–237. Edizioni ETS, Pisa (1995)Google Scholar
  14. 14.
    Bonche, P., Vautherin, D.: A mean field calculation of the equation of state of supernova matter. Nucl. Phys. A 372, 496–526 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    Buchler, J.R., Barkat, Z.: Properties of low-density neutron-star matter. Phys. Rev. Lett. 27, 48–51 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    Caporaso, G., Brecher, K.: Must ultrabaric matter be superluminal? Phys. Rev. D 20, 1823–1831 (1979)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Carter, B., Quintana, H.: Foundations of general relativistic high-pressure elasticity theory. Proc. Roy. Soc. Lond. Ser. A 331, 57–83 (1972)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Chabanat, E., Bonche, P., Haensel, P., et al.: A skyrme parameterization from subnuclear to neutron star densities. Nucl. Phys. A 627, 710–746 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Chabanat, E., Bonche, P., Haensel, P., et al.: A skyrme parameterization from subnuclear to neutron star densities. Part II. Nuclei far from stabilities. Nucl. Phys. A 635, 231–256 (1997)Google Scholar
  20. 20.
    Chodos, A., Jaffe, R.L., Johnson, K., et al.: New extended model of hadrons. Phys. Rev. D 9, 3471–3495 (1974)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Csernai, L.P., Kapusta, J.I.: Entropy and cluster production in nuclear collisions. Phys. Rep. 131(4), 223–318 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    Douchin, F., Haensel, P.: Inner edge of neutron-star crust with sly effective nucleonnucleon interactions. Phys. Lett. B 485, 107–114 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Douchin, F., Haensel, P.: A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 380, 151–167 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Drake, R.P.: High-Energy-Density Physics. Springer, Berlin, Heidelberg (2006)Google Scholar
  25. 25.
    Duerr, H.P.: Relativistic effects in nuclear forces. Phys. Rev. 103, 469–480 (1956)ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Fortov, V.E.: Ekstremal’nye sostoyaniya veshchestva (Extreme States of Matter). Fizmatlit, Moscow (2009). [Translated into English: Extreme States of Matter. Series: The Frontiers Collection. Springer, Berlin, Heidelberg (2011)]Google Scholar
  27. 27.
    Fortov, V.E.: Extreme states of matter on earth and in space. Phys. Usp. 52(6), 615–647 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Friman, B., Höhne, C., Knoll, J., et al. (eds.): The CBM Physics Book. Lecture Notes in Physics, vol. 814, 1st edn. Springer, Berlin (2010)Google Scholar
  29. 29.
    Glendenning, N.K.: Neutron stars are giant hypernuclei? Astrophys. J. 293, 470–493 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    Glendenning, N.K.: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, 2nd edn. Springer, New York (2000)CrossRefGoogle Scholar
  31. 31.
    Glendenning, N.K., Schaffner-Bielich, J.: Kaon condensation and dynamical nucleons in neutron stars. Phys. Rev. Lett. 81, 4564–4567 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    Haensel, P., Pichon, B.: Experimental nuclear masses and the ground state of cold dense matter. Astron. Astrophys. 283, 313–318 (1994)ADSGoogle Scholar
  33. 33.
    Haensel, P., Potekhin, A., Yakovlev, D.: Neutron Stars 1: Equation of State and Structure. Springer, New York (2007)CrossRefGoogle Scholar
  34. 34.
    Haensel, P., Potekhin, A.Y., Yakovlev, D.G.: Neutron stars 1: Equation of state and structure. Astrophysics and Space Science Library, vol. 326. Springer, New York (2007)Google Scholar
  35. 35.
    Hanauske, M., Zschiesche, D., Pal, S., et al.: Neutron star properties in a chiral SU(3) model. Astrophys. J. 537, 958–963 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Hands, S.: The phase diagram of QCD. Contemp. Phys. 42(4), 209–225 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    Hartle, J.B., Sawyer, R.F., Scalapino, D.J.: Pion condensed matter at high densities: equation of state and stellar models. Astrophys. J. 199, 471–481 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    Imshennik, V., Nadyozhin, D.: Supernova-1987A, and the emergence of the blast wave at the surface of the compact presupernova. Sov. Astron. Lett. 14(6), 449–452 (1988)ADSGoogle Scholar
  39. 39.
    Imshennik, V.S.: Experimental possibilities for studying the neutronization of matter in stars. Phys. At. Nucl. 58(5), 823–831 (1995)Google Scholar
  40. 40.
    Imshennik, V.S.: Explosion mechanism in supernovae collapse. Space Sci. Rev. 74(3-4), 325–334 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    Istomin, Y.N.: Electron–positron plasma generation in the magnetospheres of neutron stars. Phys. Usp. 51(8), 844 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Ivanov, Y.B., Khvorostukhin, A.S., Kolomeitsev, E.E., et al.: Lattice QCD constraints on hybrid and quark stars. Phys. Rev. C 72, 025804 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Johnson, M.H., Teller, E.: Classical field theory of nuclear forces. Phys. Rev. 98, 783–787 (1955)ADSzbMATHCrossRefGoogle Scholar
  44. 44.
    Kaplan, D.B., Nelson, A.E.: Strange goings in dense nucleonic matter. Phys. Lett. B 175, 57–63 (1986)ADSCrossRefGoogle Scholar
  45. 45.
    Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametric amplifiers: their state and prospects. Phys. Usp. 51(9), 969 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    Kifonidis, K., Plewa, T., Janka, H.T., Müller, E.: Nucleosynthesis and clump formation in a core-collapse supernova. Astrophys. J. Lett. 531, L123–L126 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressures and temperatures). Sov. Phys. Usp. 14(4), 512–523 (1972)ADSCrossRefGoogle Scholar
  48. 48.
    Kirzhnits, D.A.: Lektsii po fizike (Lectures on Physics). Nauka, Moscow (2006)Google Scholar
  49. 49.
    Kirzhnits, D.: Field-Theoretical Methods in Many-Body Systems. Pergamon Press, Oxford (1967)Google Scholar
  50. 50.
    Kohn, W.: Electronic structure of matter - wave functions and density functionals. Nobel Lecture, January 28, 1999 (a year later) (1999)Google Scholar
  51. 51.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Kolehmainen, K., Baym, G.: Pion condensation at finite temperature (ii). Simple models including thermal excitations of the pion field. Nucl. Phys. A 382, 528–541 (1982)Google Scholar
  53. 53.
    Kolomeitsev, E.E., Voskresensky, D.N.: Negative kaons in dense Baryonic matter. Phys. Rev. C 68(1), 015803 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    Kouveliotou, C., Duncan, R., Thompson, C.: Magnetars. Sci. Am. 288(2), 35–41 (2003)Google Scholar
  55. 55.
    Kunihiro, T., Takatsuka, T., Tamagaki, R.: Neutral pion condensation in hot and dense nuclear matter. Prog. Theor. Phys. Suppl. 112, 197–219 (1993)ADSCrossRefGoogle Scholar
  56. 56.
    Lattimer, J.M., Pethick, C.J., Ravenhall, D.G., Lamb, D.Q.: Physical properties of hot, dense matter: the general case. Nucl. Phys. A 432, 646–742 (1985)ADSCrossRefGoogle Scholar
  57. 57.
    Lee, T.D., Wick, G.C.: Vacuum stability and vacuum excitation in a spin-0 field theory. Phys. Rev. D 9, 2291–2316 (1974)ADSCrossRefGoogle Scholar
  58. 58.
    Lorenz, C.P., Ravenhall, D.G., Pethick, C.J.: Neutron star crusts. Phys. Rev. Lett. 70, 379–382 (1993)ADSCrossRefGoogle Scholar
  59. 59.
    Marcos, S., Barranco, M., Buchler, J.R.: Low entropy adiabats for stellar collapse. Nucl. Phys. A 381, 507–518 (1982)ADSCrossRefGoogle Scholar
  60. 60.
    Gyulassy, M.: Quark gluon plasmas: femto cosmology (2008)Google Scholar
  61. 61.
    Migdal, A.B.: Stability of vacuum and limiting fields. Zh. Eksp. Teor. Fiz. 61, 2209–2224 (1971)Google Scholar
  62. 62.
    Migdal, A.B.: Phase transitions in nuclear matter and non-pair nuclear forces. Zh. Eksp. Teor. Fiz. 63, 1993–1999 (1972). [Engl. transl.: Sov. Phys. JETP 36, 1052–1055]Google Scholar
  63. 63.
    Migdal, A.B.: Meson condensation and anomalous nuclei. Phys. Lett. B 52, 172–174 (1974)ADSCrossRefGoogle Scholar
  64. 64.
    Migdal, A.B., Saperstein, E.E., Troitsky, M.A., Voskresensky, D.N.: Pion degrees of freedom in nuclear matter. Phys. Rep. 192, 179–437 (1990)ADSCrossRefGoogle Scholar
  65. 65.
    Negele, J.W., Vautherin, D.: Neutron star matter at subnuclear densities. Nucl. Phys. A 207, 298–320 (1973)ADSCrossRefGoogle Scholar
  66. 66.
    Novikov, I.D.: “Big Bang” echo (cosmic microwave background observations). Phys. Usp. 44(8), 817 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    Ogasawara, R., Sato, K.: Nuclei in the neutrino-degenerate dense matter. II. Prog. Theor. Phys. 70, 1569–1582 (1983)ADSCrossRefGoogle Scholar
  68. 68.
    Ogata, S., Ichimaru, S.: First-principles calculations of shear moduli for monte carlo simulated coulomb solids. Phys. Rev. A 42, 4867–4870 (1990)ADSCrossRefGoogle Scholar
  69. 69.
    Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [English Transl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]Google Scholar
  70. 70.
    Olson, T.S.: Maximally incompressible neutron star matter. Phys. Rev. C 63, 015802 (2000)ADSCrossRefGoogle Scholar
  71. 71.
    Oyamatsu, K.: Nuclear shapes in the inner crust of a neutron star. Nucl. Phys. A 561, 431–452 (1993)ADSCrossRefGoogle Scholar
  72. 72.
    Page, D., Applegate, J.H.: The cooling of neutron stars by the direct Urca process. Astrophys. J. 394, L17–L20 (1992)ADSCrossRefGoogle Scholar
  73. 73.
    Pandharipande, V.R., Pethick, C.J., Thorsson, V.: Kaon energies in dense matter. Phys. Rev. Lett. 75(25), 4567–4570 (1995)ADSCrossRefGoogle Scholar
  74. 74.
    Pandharipande, V.R., Ravenhall, D.G.: Hot nuclear matter. In: Soyeur, M., Flocard, H., Tamain, B., Porneuf, M. (eds.) Nuclear Matter and Heavy Ion Collisions, pp. 103–132. Reidel, Dordrecht (1989)CrossRefGoogle Scholar
  75. 75.
    Pethick, C.J., Ravenhall, D.G.: Matter at large neutron excess and the physics of neutronstar crusts. Annu. Rev. Nucl. Sci. 45, 429–484 (1995)ADSCrossRefGoogle Scholar
  76. 76.
    Pethick, C.J., Ravenhall, D.G., Lorenz, C.: The inner boundary of a neutron-star crust. Nucl. Phys. A 584, 675–703 (1995)ADSCrossRefGoogle Scholar
  77. 77.
    Pons, J.A., Miralles, J.A., Prakash, M., Lattimer, J.M.: Evolution of proto-neutron stars with kaon condensates. Astrophys. J. 553, 382–393 (2001)ADSCrossRefGoogle Scholar
  78. 78.
    Pons, J.A., Reddy, S., Ellis, P.J., et al.: Kaon condensation in proto-neutron star matter. Phys. Rev. C 62(3), 035803 (2000)ADSCrossRefGoogle Scholar
  79. 79.
    Potekhin, A.Y.: The physics of neutron stars. Phys. Usp. 53(12), 1235–1256 (2010)ADSCrossRefGoogle Scholar
  80. 80.
    Pudliner, B.S., Pandharipande, V.R., Carlson, J., Wiringa, R.B.: Quantum monte carlo calculations of a ≤ 6 nuclei. Phys. Rev. Lett. 74, 4396–4399 (1995)ADSCrossRefGoogle Scholar
  81. 81.
    Ramos, A., Schaffner-Bielich, J., Wambach, J.: Kaon condensation in neutron stars. In: Blaschke, D., Glendenning, N.K., Sedrakian, A. (eds.) Physics of Neutron Star Interiors. Lecture Notes in Phys, vol. 578, pp. 175–202 (2001). [nucl-th/0011003]Google Scholar
  82. 82.
    Rijken, T.A., Stoks, V.G.J., Yamamoto, Y.: Soft-core hyperon-nucleon potentials. Phys. Rev. C 59, 21–40 (1999)ADSCrossRefGoogle Scholar
  83. 83.
    Rikovska Stone, J., Miller, J.C., Koncewicz, R., et al.: Nuclear matter and neutron-star properties calculated with the skyrme interaction. Phys. Rev. C 68(3), 034324 (2003)ADSCrossRefGoogle Scholar
  84. 84.
    Rubakov, V.A.: Introduction to cosmology. PoS RTN2005, 003 (2005)Google Scholar
  85. 85.
    Ruderman, M.A.: Causes of sound faster than light in classical models of ultradense matter. Phys. Rev. 172, 1286–1290 (1968)ADSCrossRefGoogle Scholar
  86. 86.
    Salpeter, E.E.: Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669–682 (1961)ADSMathSciNetCrossRefGoogle Scholar
  87. 87.
    Sawyer, R.F.: Condensed π phase in neutron-star matter. Phys. Rev. Lett. 29, 382–385 (1972)ADSCrossRefGoogle Scholar
  88. 88.
    Scalapino, D.J.: π condensate in dense nuclear matter. Phys. Rev. Lett. 29, 386–388 (1972)Google Scholar
  89. 89.
    Schertlera, K., Greinera, C., Schaffner-Bielichc, J., Thoma, M.: Quark phases in neutron stars and a third family of compact stars as signature for phase transitions. Nucl. Phys. A 677(1-4), 463–490 (2001)ADSCrossRefGoogle Scholar
  90. 90.
    Schiavilla, R., Pandharipande, V.R., Wiringa, R.B.: Momentum distributions in a = 3 and 4 nuclei. Nucl. Phys. A 449, 219–242 (1986)ADSCrossRefGoogle Scholar
  91. 91.
    Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars. Wiley, New York (1983)CrossRefGoogle Scholar
  92. 92.
    Stöcker, H., Greiner, W.: High energy heavy ion collisions–probing the equation of state of highly excited hardronic matter. Phys. Rep. 137(5-6), 277–392 (1986)ADSCrossRefGoogle Scholar
  93. 93.
    Stoks, V.G.J., Klomp, R.A.M., Terheggen, C.P.F., de Swart, J.J.: Construction of high-quality nn potential models. Phys. Rev. C 49, 2950–2962 (1994)ADSCrossRefGoogle Scholar
  94. 94.
    Sugahara, Y., Toki, H.: Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms. Nucl. Phys. A 579, 557–572 (1994)ADSCrossRefGoogle Scholar
  95. 95.
    Sumiyoshi, K., Yamada, S., Suzuki, H., Hillebrandt, W.: The fate of a neutron star just below the minimum mass: does it explode? Astron. Astrophys. 334, 159–168 (1998)ADSGoogle Scholar
  96. 96.
    Tsuruta, S., Cameron, A.G.W.: Some effects of nuclear forces on neutron-star models. Can. J. Phys. 44, 1895–1922 (1966)ADSCrossRefGoogle Scholar
  97. 97.
    Vidaña, I., Polls, A., Ramos, A., et al.: Hyperon-hyperon interactions and properties of neutron star matter. Phys. Rev. C 62, 035801 (2000)ADSCrossRefGoogle Scholar
  98. 98.
    Weber, F., Weigel, M.K.: Baryon composition and macroscopic properties of neutron stars. Nucl. Phys. A 505, 779–822 (1989)ADSCrossRefGoogle Scholar
  99. 99.
    Weber, F., Weigel, M.K.: Neutron star properties and the relativistic nuclear equation of state of many baryon matter. Nucl. Phys. A 493, 549–582 (1989)ADSCrossRefGoogle Scholar
  100. 100.
    Wiringa, R.B., Fiks, V., Fabrocini, A.: Equation of state for dense nucleon matter. Phys. Rev. C 38, 1010–1037 (1988)ADSCrossRefGoogle Scholar
  101. 101.
    Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38–51 (1995)ADSCrossRefGoogle Scholar
  102. 102.
    Witten, E.: Cosmic separation of phases. Phys. Rev. D 30, 272–285 (1984)ADSCrossRefGoogle Scholar
  103. 103.
    Yakovlev, D.G.: Superfluidity in neutron stars. Phys. Usp. 44(8), 823–826 (2001)ADSCrossRefGoogle Scholar
  104. 104.
    Yakovlev, D.G., Levenfish, K.P., Shibanov, Y.A.: Cooling of neutron stars and superfluidity in their cores. Phys. Usp. 42(8), 737 (1999)ADSCrossRefGoogle Scholar
  105. 105.
    Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics). Vek 2, Fryazino (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Fortov
    • 1
  1. 1.Russian Academy of Sciences Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations