Technical Applications of the Physics of High Energy Densities

  • Vladimir E. Fortov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 216)


In the first three sections of this chapter we address the most interesting of the numerous technical applications of high energy density physics—controlled thermonuclear fusion with magnetic and inertial confinement as well as thermonuclear fusion with the use of heavy ion beams. We touch upon the development of compact laser-plasma accelerators of high-energy electrons and ions based on new-generation femtosecond lasers. In the last section of the chapter we consider the use in experiments of synchrotron radiation sources, free-electron lasers, high-intensity sources of terahertz radiation pulses, as well as plasmas in accelerators.


Laser Pulse Terahertz Radiation Plasma Boundary International Thermonuclear Experimental Reactor Fast Ignition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fair project web siteGoogle Scholar
  2. 2.
  3. 3.
    The European X-Ray Laser Project XFEL
  4. 4.
    ITER Physics Basic, vol. 39 (1999)Google Scholar
  5. 5.
    Albert, F., Phuoc, K.T., Shah, R., et al.: Full characterization of a laser-produced keV X-ray betatron source. Plasma Phys. Control. Fusion 50(12), 124008 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Andreev, N.E., Gorbunov, L.M.: Laser-plasma acceleration of electrons. Phys. Usp. 42(1), 49 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: The theory of laser self-resonant wake field excitation. Phys. Scr. 49(1), 101–109 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    Andreev, N.E., Kirsanov, V.I., Gorbunov, L.M.: Stimulated processes and self-modulation of a short intense laser pulse in the laser wake-field accelerator. Phys. Plasmas 2(6), 2573–2582 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Andreev, N.E., Kirsanov, V.I., Sakharov, A.S., et al.: On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator. Phys. Plasmas 3(8), 3121–3128 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: Structure of the wake field in plasma channels. Phys. Plasmas 4(4), 1145–1153 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Sakharov, A.S.: Self-modulation of high-intensity laser pulses in underlense plasmas and plasma channels. AIP Conf. Proc. 396(1), 61–74 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Andreev, N.E., Chizhonkov, E.V., Frolov, A.A., Gorbunov, L.M.: On laser wakefield acceleration in plasma channels. Nucl. Instrum. Methods Phys. Res. A 410(3), 469–476 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Andreev, N.E., Cros, B., Gorbunov, L.M., et al.: Laser wakefield structure in a plasma column created in capillary tubes. Phys. Plasmas 9(9), 3999–4009 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Andreev, N.E., Nishida, Y., Yugami, N.: Propagation of short intense laser pulses in gas-filled capillaries. Phys. Rev. E 65(5), 056407 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Andreev, N.E., Kuznetsov, S.V., Cros, B., et al.: Laser wakefield acceleration of supershort electron bunches in guiding structures. Plasma Phys. Control. Fusion 53(1), 014001 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Antonsen Jr., T.M., Mora, P.: Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69(15), 2204–2207 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Antonsen Jr., T.M., Mora, P.: Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Fluids B 5(5), 1440–1452 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Antonsen Jr., T.M., Palastro, J., Milchberg, H.M.: Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys. Plasmas 14(3), 033107 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  20. 20.
    Atzeni, S., Temporal, M., Honrubia, J.J.: A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42(3), L1–L4 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Azizov, E.A.: Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks). Phys. Usp. 55(2), 190–203 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Bakhmetjev, I.E., Fertman, A.D., Golubev, A.A., et al.: Research into the advanced experimental methods for precision ion stopping range measurements in matter. Laser Part. Beams 21(1), 1–6 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Bakunov, M.I., Bodrov, S.B., Maslov, A.V., Sergeev, A.M.: Two-dimensional theory of Cherenkov radiation from short laser pulses in a magnetized plasma. Phys. Rev. E 70(1), 016401 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60(9), 092004 (1999)Google Scholar
  25. 25.
    Batani, D., Jafer, R., Redaelli, R., et al.: Effects of laser prepulse on proton generation. Nucl. Instrum. Methods Phys. Res. A 620(1), 76–82 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., Matafonov, A.P.: Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets. Phys. Usp. 51(8), 793 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Berezhiani, V.I., Murusidze, I.G.: e+e – Pair production by a focused laser pulse in vacuum. Phys. Lett. A 148(6–7), 338–340 (1990)Google Scholar
  28. 28.
    Berg, L., Skupin, S., Nuter, R., et al.: Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70(10), 1633 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Betti, R., Chang, P.Y., Spears, B.K., et al.: Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement. Phys. Plasmas 17(5), 058102 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Bieniosek, F., Barnard, J., Leitner, M., et al.: Diagnostics for near-term warm dense matter experiments. Nucl. Instrum. Methods Phys. Res. A 577(1–2), 284–288 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Bulanov, S.V., Kirsanov, V.I., Sakharov, A.S.: Excitation of ultrarelativistic plasma waves by pulse of electromagnetic radiation. JETP Lett. 50(4), 198 (1991)ADSGoogle Scholar
  32. 32.
    Bulanov, S.S., Bychenkov, V.Y., Chvykov, V., et al.: Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17(4), 043105 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Bulanov, S.V., Echkina, E.Y., Esirkepov, T.Z., et al.: Unlimited ion acceleration by radiation pressure. Phys. Rev. Lett. 104, 135003 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Bychenkov, V.Y., Rozmus, W., Maksimchuk, A., et al.: Fast ignitor concept with light ions. Plasma Phys. Rep. 27(12), 1017–1020 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Bystrov, A.M., Vvedenskii, N.V., Gildenburg, V.B.: Generation of terahertz radiation upon the optical breakdown of a gas. JETP Lett. 82(12), 753–757 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Callahan, D.A., Meezan, N.B., Glenzer, S.H., et al.: The velocity campaign for ignition on NIF. Phys. Plasmas 19(5), 056305 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Carr, G.L., Martin, M.C., McKinney, W.R., et al.: High-power terahertz radiation from relativistic electrons. Nature 420(6912), 153–156 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Carr, G.L., Martin, M.C., McKinney, W.R., et al.: Very high power THz radiation at Jefferson Lab. Phys. Med. Biol. 47(21), 3761–3764 (2002)CrossRefGoogle Scholar
  39. 39.
    Cavailler, C.: Inertial fusion with the LMJ. Plasma Phys. Control. Fusion 47(12B), B389–B403 (2005)CrossRefGoogle Scholar
  40. 40.
    Chalupský, J., Juha, L., Hájková, V., et al.: Non-thermal desorption/ablation of molecular solids induced by ultra-short soft X-ray pulses. Opt. Express 17(1), 208–217 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Chang, P., Betti, R., Spears, B.K., et al.: Generalized measurable ignition criterion for inertial confinement fusion. Phys. Rev. Lett. 104, 135002 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Chapman, H.N., Fromme, P., Barty, A., et al.: Femtosecond X-ray protein nanocrystallography. Nature 470(2), 73–77 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, vol. 1, 2nd edn. Springer, New York (1984)Google Scholar
  44. 44.
    Chen, L.M., Liu, F., Wang, W.M., et al.: Intense high-contrast femtosecond K-shell X-ray source from laser-driven Ar clusters. Phys. Rev. Lett. 104, 215004 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Clark, T.R., Milchberg, H.M.: Optical mode structure of the plasma waveguide. Phys. Rev. E 61(2), 1954–1965 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    Clark, E.L., Krushelnick, K., Davies, J.R., et al.: Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84(4), 670–673 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Clark, D.S., Haan, S.W., Cook, A.W., et al.: Short-wavelength and three-dimensional instability evolution in national ignition facility ignition capsule designs. Phys. Plasmas 18(8), 082701 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Colgan, J., Abdallah Jr., J., Faenov, A.Y., et al.: Observation and modeling of high resolution spectral features of the inner-shell X-ray emission produced by 10−10 contrast femtosecond-pulse laser irradiation of argon clusters. High Energy Density Phys. 7(2), 77–83 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Collins, S.H., et al.: In: The 17th APS Shock Compression of Condensed Matter, Chicago (2011)Google Scholar
  50. 50.
    Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441(2–4), 47–189 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Courtois, C., Couairon, A., Cros, B., et al.: Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments. Phys. Plasmas 8(7), 3445–3456 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    Cros, B., Courtois, C., Malka, G., et al.: Excitation of accelerating wakefields in inhomogeneous plasmas. IEEE Trans. Plasma Sci. 28(4), 1071–1077 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    Decker, C.D., Mori, W.B., Tzeng, K.C., Katsouleas, T.C.: Modeling single-frequency laser-plasma acceleration using particle-in-cell simulations: the physics of beam breakup. IEEE Trans. Plasma Sci. 24(2), 379–392 (1996)ADSCrossRefGoogle Scholar
  55. 55.
  56. 56.
    Didenko, A., Rashchikov, V., Fortov, V.: On possibility of high-power terahertz emission from target under the action of powerful laser pulses. Tech. Phys. Lett. 37, 256–258 (2011). doi:10.1134/S1063785011030205ADSCrossRefGoogle Scholar
  57. 57.
    Ditmire, T., Tisch, J.W.G., Springate, E., et al.: High-energy ions produced in explosions of superheated atomic clusters. Nature 386(6620), 54–56 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    Ditmire, T., Springate, E., Tisch, J.W., et al.: Explosion of atomic clusters heated by high-intensity femtosecond laser pulses. Phys. Rev. A 57(1), 369–382 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398(6727), 489–492 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion in gases of deuterium clusters heated with a femtosecond laser. Phys. Plasmas 7(5), 1993–1998 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    Döppner, T., Thomas, C.A., Divol, L., et al.: Direct measurement of energetic electrons coupling to an imploding low-adiabat inertial confinement fusion capsule. Phys. Rev. Lett. 108, 135006 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    Dorranian, D., Starodubtsev, M., Kawakami, H., et al.: Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction. Phys. Rev. E 68(2), 026409 (2003)ADSCrossRefGoogle Scholar
  63. 63.
    Douglas, D.R., Jordan, K.C., Merminga, L., et al.: Experimental investigation of multibunch, multipass beam breakup in the Jefferson Laboratory free electron laser upgrade driver. Phys. Rev. ST Accel. Beams 9(6), 064403 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    Doumy, G., Roedig, C., Son, S.K., et al.: Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Durfee III, C.G., Milchberg, H.M.: Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71(15), 2409–2412 (1993)ADSCrossRefGoogle Scholar
  66. 66.
    Dzelzainis, T., Chalupsky, J., Fajardo, M., et al.: Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser. High Energy Density Phys. 6(1), 109–112 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    Echkina, E., Inovenkov, I., Esirkepov, T., et al.: Dependence of the ion energy on the parameters of the laser pulse and target in the radiation-pressure-dominated regime of acceleration. Plasma Phys. Rep. 36, 15–29 (2010). doi:10.1134/S1063780X10010022ADSCrossRefGoogle Scholar
  68. 68.
    Efremov, V.P., Pikuz Jr., S.A., Faenov, A.Y., et al.: Study of the energy release region of a heavy-ion flux in nanomaterials by X-ray spectroscopy of multicharged ions. JETP Lett. 81(8), 378 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    Egorov, I.: Zvezdy na Zemle: Termoyad (Stars on the Earth: thermonuclear fusion). Populyarnaya Mekhanika (5), 86 (2012)Google Scholar
  70. 70.
    Eloy, M., Azambuja, R., Mendonca, J.T., Bingham, R.: Interaction of ultrashort high-intensity laser pulses with atomic clusters. Phys. Plasmas 8(3), 1084–1086 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    Esarey, E., Sprangle, P., Krall, J., Ting, A.: Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24(2), 252–288 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., et al.: Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89(17), 175003 (2002)ADSCrossRefGoogle Scholar
  74. 74.
    Esirkepov, T., Borghesi, M., Bulanov, S.V., et al.: Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92(17), 175003 (2004)ADSCrossRefGoogle Scholar
  75. 75.
    Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96(10), 105001 (2006)ADSCrossRefGoogle Scholar
  76. 76.
    Faure, J., Glinec, Y., Pukhov, A., et al.: A laserplasma accelerator producing monoenergetic electron beams. Nature 431(7008), 541–544 (2004)ADSCrossRefGoogle Scholar
  77. 77.
    Fäustlin, R.R., Bornath, T., Döppner, T., et al.: Observation of ultrafast nonequilibrium collective dynamics in warm dense hydrogen. Phys. Rev. Lett. 104, 125002 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Flacco, A., Ceccotti, T., George, H., et al.: Comparative study of laser ion acceleration with different contrast enhancement techniques. Nucl. Instrum. Methods Phys. Res. A 620(1), 18–22 (2010)ADSCrossRefGoogle Scholar
  79. 79.
    Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma). Nauka, Moscow (2000)Google Scholar
  80. 80.
    Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)Google Scholar
  81. 81.
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: current status, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005)ADSMathSciNetCrossRefGoogle Scholar
  82. 82.
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    Fourkal, E., Shahine, B., Ding, M., et al.: Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Med. Phys. 29(12), 2788–2798 (2002)CrossRefGoogle Scholar
  84. 84.
    Fourkal, E., Li, J.S., Xiong, W., et al.: Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study. Phys. Med. Biol. 48(24), 3977–4000 (2003)CrossRefGoogle Scholar
  85. 85.
    Frenje, J.A., Casey, D.T., Li, C.K., et al.: Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometer. Phys. Plasmas 17(5), 056311 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    Frolov, A.A.: Excitation of surface waves at a plasma boundary by a short laser pulse. Plasma Phys. Rep. 33(3), 179–188 (2007)ADSCrossRefGoogle Scholar
  87. 87.
    Fuchs, M., Weingartner, R., Popp, A., Major, Z., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Horlein, R., Tsakiris, G.D., Schramm, U., Rowlands-Rees, T.P., Hooker, S.M., Habs, D., Krausz, F., Karsch, S., Grüner, F.: Laser-driven soft-X-ray undulator source. Nat. Phys. 5(09), 826–829 (2009)CrossRefGoogle Scholar
  88. 88.
    Fukuda, Y., Faenov, A.Y., Pikuz, T., et al.: Soft X-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters. Appl. Phys. Lett. 92(12), 121110 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    Fukuda, Y., Faenov, A.Y., Tampo, M., et al.: Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103, 165002 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    Gaillard, S.A., et al.: Abstract no. g06.003. In: Proceedings of the APS 51st Annual Meeting of the Division of Plasma Physics. APS, New York (2009)Google Scholar
  91. 91.
    Gaillard, S.A., Flippo, K.A., Lowenstern, M.E., et al.: Proton acceleration from ultrahigh-intensity short-pulse laser-matter interactions with cu micro-cone targets at an intrinsic \(\sim 10^{8}\) contrast. J. Phys.: Conf. Ser. 244(2), 022034 (2010)Google Scholar
  92. 92.
    Gavrilenko, V.P., Faenov, A.Y., Magunov, A.I., et al.: Observation of modulations in Lyman-α line profiles of multicharged ions in clusters irradiated by femtosecond laser pulses: effect of a dynamic electric field. Phys. Rev. A 73, 013203 (2006)ADSCrossRefGoogle Scholar
  93. 93.
    Geddes, C.G.R., Tóth, C., van Tilborg, J., et al.: High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431(7008), 538–541 (2004)ADSCrossRefGoogle Scholar
  94. 94.
    Giannessi, L., Bacci, A., Bellaveglia, M., et al.: Self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering. Phys. Rev. Lett. 106, 144801 (2011)ADSCrossRefGoogle Scholar
  95. 95.
    Gizzi, L., Betti, S., Frster, E., et al.: Laser-accelerated ions from layered targets. Nucl. Instrum. Methods Phys. Res. A 620(1), 83–87 (2010)ADSCrossRefGoogle Scholar
  96. 96.
    Glebov, V.Y., Forrest, C., Knauer, J.P., et al.: Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA. Rev. Sci. Instrum. 83(10), 10D309 (2012)Google Scholar
  97. 97.
    Glenzer, S.H.: Update on the national ignition campaign (2012)Google Scholar
  98. 98.
    Glenzer, S.H., MacGowan, B.J., Michel, P., et al.: Symmetric inertial confinement fusion implosions at ultra-high laser energies. Science 327(5970), 1228–1231 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    Glenzer, S.H., MacGowan, B.J., Meezan, N.B., et al.: Publisher’s note: demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums [Phys. Rev. Lett. 106, 085004 (2011)]. Phys. Rev. Lett. 106, 109903 (2011)Google Scholar
  100. 100.
    Glenzer, S.H., MacGowan, B.J., Meezan, N.B., et al.: Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004 (2011)ADSCrossRefGoogle Scholar
  101. 101.
    Glenzer, S.H., Callahan, D.A., MacKinnon, A.J., et al.: Cryogenic thermonuclear fuel implosions on the national ignition facility. Phys. Plasmas 19(5), 056318 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    Glenzer, S.H., Spears, B.K., Edwards, M.J., et al.: First implosion experiments with cryogenic thermonuclear fuel on the national ignition facility. Plasma Phys. Control. Fusion 54(4), 045013 (2012)ADSCrossRefGoogle Scholar
  103. 103.
    Golubev, S.V., Suvorov, E.V., Shalashov, A.G.: On the possibility of terahertz wave generation upon dense gas optical breakdown. JETP Lett. 79(8), 361–364 (2004)ADSCrossRefGoogle Scholar
  104. 104.
    Goncharov, V.N., Sangster, T.C., Boehly, T.R., et al.: Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. Phys. Rev. Lett. 104, 165001 (2010)ADSCrossRefGoogle Scholar
  105. 105.
    Gorbunov, L.M., Frolov, A.A.: Emission of low-frequency electromagnetic waves by a short laser pulse in stratified rarefied plasma. J. Exp. Theor. Phys. 83(5), 967–973 (1996)ADSGoogle Scholar
  106. 106.
    Gorbunov, L.M., Frolov, A.A.: Emission of low-frequency electromagnetic waves by a short laser pulse propagating in a plasma with density fluctuations. Plasma Phys. Rep. 26(8), 646–656 (2000)ADSCrossRefGoogle Scholar
  107. 107.
    Gorbunov, L.M., Frolov, A.A.: Electromagnetic radiation at twice the plasma frequency emitted from the region of interaction of two short laser pulses in a rarefied plasma. J. Exp. Theor. Phys. 98(3), 527–537 (2004)ADSCrossRefGoogle Scholar
  108. 108.
    Gorbunov, L.M., Frolov, A.A.: Low-frequency transition radiation from a short laser pulse at the plasma boundary. J. Exp. Theor. Phys. 102(6), 894–901 (2006)ADSCrossRefGoogle Scholar
  109. 109.
    Gorbunov, L.M., Frolov, A.A.: On the theory of Cherenkov emission from a short laser pulse in a magnetized plasma. Plasma Phys. Rep. 32(6), 500–513 (2006)ADSCrossRefGoogle Scholar
  110. 110.
    Gorbunov, L.M., Frolov, A.A.: Transition radiation generated by a short laser pulse at a plasma–vacuum interface. Plasma Phys. Rep. 32(10), 850–865 (2006)ADSCrossRefGoogle Scholar
  111. 111.
    Gorbunov, L.M., Kirsanov, V.I.: The excitation of plasma waves by an electromagnetic wave packet. J. Exp. Theor. Phys. 93, 509 (1987) (in Russian)Google Scholar
  112. 112.
    Gorbunov, L., Kirsanov, V., et al.: In: Trudy FIAN, vol. 219, p. 3. Nauka, Moscow (1992)Google Scholar
  113. 113.
    Gorbunov, L.M., Kalmykov, S.Y., Mora, P.: Laser wakefield acceleration by petawatt ultrashort laser pulses. Phys. Plasmas 12(3), 033101 (2005)ADSCrossRefGoogle Scholar
  114. 114.
    Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12(4), 043109 (2005)ADSCrossRefGoogle Scholar
  115. 115.
    Haan, S.W., Lindl, J.D., Callahan, D.A., et al.: Point design targets, specifications, and requirements for the 2010 ignition campaign on the national ignition facility. Phys. Plasmas 18(5), 051001 (2011)ADSCrossRefGoogle Scholar
  116. 116.
    Hafz, N.A.M., Jeong, T.M., Choi, I.W., et al.: Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nat. Photonics 2, 571–577 (2008)CrossRefGoogle Scholar
  117. 117.
    Hammel, B.A., Scott, H.A., Regan, S.P., et al.: Diagnosing and controlling mix in National Ignition Facility implosion experiments. Phys. Plasmas 18(5), 056310 (2011)ADSCrossRefGoogle Scholar
  118. 118.
    Hamster, H., Sullivan, A., Gordon, S., et al.: Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71(17), 2725–2728 (1993)ADSCrossRefGoogle Scholar
  119. 119.
    Hatchett, S.P., Brown, C.G., Cowan, T.E., et al.: Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7(5), 2076–2082 (2000)ADSCrossRefGoogle Scholar
  120. 120.
    Hau-Riege, S.P., London, R.A., Bionta, R.M., et al.: Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation. Appl. Phys. Lett. 95(11), 111104 (2009)ADSCrossRefGoogle Scholar
  121. 121.
    Hayashi, Y., Pirozhkov, A.S., Kando, M., et al.: Efficient generation of Xe K-shell X-rays by high-contrast interaction with submicrometer clusters. Opt. Lett. 36(9), 1614–1616 (2011)ADSCrossRefGoogle Scholar
  122. 122.
    Hegelich, B.M., Albright, B.J., Cobble, J., et al.: Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006)ADSCrossRefGoogle Scholar
  123. 123.
    Henig, A., Kiefer, D., Markey, K., et al.: Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002 (2009)ADSCrossRefGoogle Scholar
  124. 124.
    Henig, A., Steinke, S., Schnürer, M., et al.: Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009)ADSCrossRefGoogle Scholar
  125. 125.
    Hicks, D.G., Spears, B.K., Braun, D.G., et al.: Convergent ablator performance measurements. Phys. Plasmas 17(10), 102703 (2010)ADSCrossRefGoogle Scholar
  126. 126.
    Hoener, M., Fang, L., Kornilov, O., et al.: Ultraintense X-ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen. Phys. Rev. Lett. 104, 253002 (2010)ADSCrossRefGoogle Scholar
  127. 127.
    Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., et al.: Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9(9), 3651–3654 (2002)ADSCrossRefGoogle Scholar
  128. 128.
    Hoffmann, D., Tahir, N., Udrea, S., et al.: High energy density physics with heavy ion beams and related interaction phenomena. Contrib. Plasma Phys. 50(1), 7–15 (2010)ADSCrossRefGoogle Scholar
  129. 129.
    Hogan, W.J. (ed.): Energy from Inertial Fusion. IAEA, Vienna (1995)Google Scholar
  130. 130.
    Honrubia, J.J., Fernández, J.C., Temporal, M., et al.: Fast ignition of inertial fusion targets by laser-driven carbon beams. Phys. Plasmas 16(10), 102701 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    Hooker, S.M., Spence, D.J., Smith, R.A.: Guiding of high-intensity picosecond laser pulses in a discharge-ablated capillary waveguide. J. Opt. Soc. Am. B 17(1), 90–98 (2000)ADSCrossRefGoogle Scholar
  132. 132.
    Hosokai, T., Zhidkov, A., Yamazaki, A., et al.: Electron energy boosting in laser-wake-field acceleration with external magnetic field \(B \sim 1\) T and laser prepulses. Appl. Phys. Lett. 96(12), 121501 (2010)ADSCrossRefGoogle Scholar
  133. 133.
    Huang, L.G., Lei, A.L., Bin, J.H., et al.: Improving proton acceleration with circularly polarized intense laser pulse by radial confinement with heavy ions. Phys. Plasmas 17(1), 013106 (2010)ADSCrossRefGoogle Scholar
  134. 134.
    Huntington, C.M., Thomas, A.G.R., McGuffey, C., et al.: Current filamentation instability in laser wakefield accelerators. Phys. Rev. Lett. 106, 105001 (2011)ADSCrossRefGoogle Scholar
  135. 135.
    Inogamov, N.A., Anisimov, S.I., Zhakhovsky, V.V., et al.: Ablation by short optical and X-ray laser pulses. In: Proc. SPIE 7996, Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2010, p. 79960T (2010)Google Scholar
  136. 136.
    Inogamov, N.A., Faenov, A.Y., Zhakhovsky, V.V., et al.: Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse. Contrib. Plasma Phys. 51(5), 419–426 (2011)ADSCrossRefGoogle Scholar
  137. 137.
    Jiang, Y.H., Rudenko, A., Pérez-Torres, J.F., et al.: Investigating two-photon double ionization of D2 by XUV-pump˘XUV-probe experiments. Phys. Rev. A 81, 051402 (2010)ADSCrossRefGoogle Scholar
  138. 138.
    Johnson, M.G., Frenje, J.A., Casey, D.T., et al.: Neutron spectrometry—an essential tool for diagnosing implosions at the national ignition facility (invited). Rev. Sci. Instrum. 83(10), 10D308 (2012)Google Scholar
  139. 139.
    Joshi, C.: Plasma accelerators. Sci. Am. 294(2), 40–47 (2006)CrossRefGoogle Scholar
  140. 140.
    Kando, M., Pirozhkov, A.S., Kawase, K., et al.: Enhancement of photon number reflected by the relativistic flying mirror. Phys. Rev. Lett. 103, 235003 (2009)ADSCrossRefGoogle Scholar
  141. 141.
    Kaplan, A.E., Dubetsky, B.Y., Shkolnikov, P.L.: Shock shells in Coulomb explosions of nanoclusters. Phys. Rev. Lett. 91(14), 143401 (2003)ADSCrossRefGoogle Scholar
  142. 142.
    Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametric amplifiers: their state and prospects. Phys. Usp. 51(9), 969 (2008)ADSCrossRefGoogle Scholar
  143. 143.
    Khorsand, A.R., Sobierajski, R., Louis, E., et al.: Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure. Opt. Express 18(2), 700–712 (2010)ADSCrossRefGoogle Scholar
  144. 144.
    Kim, K.Y., Milchberg, H.M., Faenov, A.Y., et al.: X-ray spectroscopy of 1cm plasma channels produced by self-guided pulse propagation in elongated cluster jets. Phys. Rev. E 73, 066403 (2006)ADSCrossRefGoogle Scholar
  145. 145.
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressures and temperatures). Sov. Phys. – Usp. 14(4), 512–523 (1972)Google Scholar
  146. 146.
    Kishimoto, Y., Masaki, T., Tajima, T.: High energy ions and nuclear fusion in laser-cluster interaction. Phys. Plasmas 9(2), 589–601 (2002)ADSCrossRefGoogle Scholar
  147. 147.
    Kline, J.L., Glenzer, S.H., Olson, R.E., et al.: Observation of high soft X-ray drive in large-scale hohlraums at the National Ignition Facility. Phys. Rev. Lett. 106, 085003 (2011)ADSCrossRefGoogle Scholar
  148. 148.
    Kneip, S., McGuffey, C., Martins, J.L., et al.: Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6(10), 980–983 (2010)CrossRefGoogle Scholar
  149. 149.
    Kodama, R., Norreys, P.A., Mima, K., et al.: Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412(6849), 798–802 (2001)ADSCrossRefGoogle Scholar
  150. 150.
    Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., et al.: Numerical modeling of shock-wave instability in thermodynamically nonideal media. J. Exp. Theor. Phys. 98(4), 811–819 (2004)ADSCrossRefGoogle Scholar
  151. 151.
    Krall, J., Ting, A., Esarey, E., Sprangle, P.: Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48(3), 2157–2161 (1993)ADSCrossRefGoogle Scholar
  152. 152.
    Krikunova, M., Maltezopoulos, T., Azima, A., et al.: Time-resolved ion spectrometry on xenon with the jitter-compensated soft X-ray pulses of a free-electron laser. New J. Phys. 11(12), 123019 (2009)ADSCrossRefGoogle Scholar
  153. 153.
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading, MA (1988)Google Scholar
  154. 154.
    Kugland, N.L., Neumayer, P., Döppner, T., et al.: High contrast Kr gas jet K alpha X-ray source for high energy density physics experiments. Rev. Sci. Instrum. 79(10), 10E917 (2008)Google Scholar
  155. 155.
    Kyrala, G.A., Seifter, A., Kline, J.L., et al.: Tuning indirect-drive implosions using cone power balance. Phys. Plasmas 18(7), 072703 (2011)ADSCrossRefGoogle Scholar
  156. 156.
    Landen, O.L., Edwards, J., Haan, S.W., et al.: Capsule implosion optimization during the indirect-drive National Ignition Campaign. Phys. Plasmas 18(5), 051002 (2011)ADSCrossRefGoogle Scholar
  157. 157.
    Last, I., Schek, I., Jortner, J.: Energetics and dynamics of Coulomb explosion of highly charged clusters. J. Chem. Phys. 107(17), 6685–6692 (1997)ADSCrossRefGoogle Scholar
  158. 158.
    Lee, K., Lee, J.Y., Park, S.H., et al.: Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse. Phys. Plasmas 18(1), 013101 (2011)ADSCrossRefGoogle Scholar
  159. 159.
    Leemans, W.P., Geddes, C.G.R., Faure, J., et al.: Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91(7), 074802 (2003)ADSCrossRefGoogle Scholar
  160. 160.
    Leemans, W.P., van Tilborg, J., Faure, J., et al.: Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 11(5), 2899–2906 (2004)ADSCrossRefGoogle Scholar
  161. 161.
    Leemans, W.P., Nagler, B., Gonsalves, A.J., et al.: GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006)CrossRefGoogle Scholar
  162. 162.
    Li, C.K., Sguin, F.H., Frenje, J.A., et al.: Charged-particle probing of X-ray driven inertial-fusion implosions. Science 327(5970), 1231–1235 (2010)ADSCrossRefGoogle Scholar
  163. 163.
    Lifschitz, A.F., Faure, J., Malka, V., Mora, P.: GeV wakefield acceleration of low energy electron bunches using petawatt lasers. Phys. Plasmas 12(9), 093104 (2005)ADSCrossRefGoogle Scholar
  164. 164.
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  165. 165.
    Lindli, J.D.: Nif ignition target design, requirements, margins, and uncertainties. In: Proceedings of 6th International Conference IFSA, San Francisco (2009)Google Scholar
  166. 166.
    Lu, H.Y., Liu, J.S., Wang, C., et al.: Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields. Phys. Rev. A 80, 051201 (2009)ADSCrossRefGoogle Scholar
  167. 167.
    Lykov, V.A., Baidin, G.V.: Computer simulation of laser proton acceleration for hadron therapy. J. Phys.: Conf. Ser. 244(2), 022046 (2010)Google Scholar
  168. 168.
    Mackinnon, A.J., Kline, J.L., Dixit, S.N., et al.: Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions. Phys. Rev. Lett. 108, 215005 (2012)ADSCrossRefGoogle Scholar
  169. 169.
    Maksimchuk, A., Gu, S., Flippo, K., et al.: Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84(18), 4108–4111 (2000)ADSCrossRefGoogle Scholar
  170. 170.
    Maksimchuk, A., Flippo, K., Krause, H., et al.: Plasma phase transition in dense hydrogen and electron–hole plasmas. Plasma Phys. Rep. 30(6), 473–495 (2004)ADSCrossRefGoogle Scholar
  171. 171.
    Malka, V., Faure, J., Gauduel, Y.A., et al.: Principles and applications of compact laserplasma accelerators. Nat. Phys. 4(06), 447–453 (2008)CrossRefGoogle Scholar
  172. 172.
    Mancic, A., Robiche, J., Antici, P., et al.: Isochoric heating of solids by laser-accelerated protons: experimental characterization and self-consistent hydrodynamic modeling. High Energy Density Phys. 6(1), 21–28 (2010)ADSCrossRefGoogle Scholar
  173. 173.
    Mancuso, A.P., Gorniak, T., Staier, F., et al.: Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH. New J. Phys. 12(3), 035003 (2010)ADSCrossRefGoogle Scholar
  174. 174.
    Martins, M., Wellhöfer, M., Sorokin, A.A., et al.: Resonant multiphoton processes in the soft-X-ray regime. Phys. Rev. A 80, 023411 (2009)ADSCrossRefGoogle Scholar
  175. 175.
    McGuffey, C., Thomas, A.G.R., Schumaker, W., et al.: Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010)ADSCrossRefGoogle Scholar
  176. 176.
    Mesyats, G.A.: Impul’snaya energetika i elektronika (Pulse Power and Electronics). Nauka, Moscow (2004)Google Scholar
  177. 177.
    Mesyats, G.A., Yalandin, M.I.: High-power picosecond electronics. Phys. Usp. 48(3), 211 (2005)ADSCrossRefGoogle Scholar
  178. 178.
    Michel, P., Divol, L., Williams, E.A., et al.: Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett. 102, 025004 (2009)ADSCrossRefGoogle Scholar
  179. 179.
    Michel, D.T., Depierreux, S., Stenz, C., et al.: Exploring the saturation levels of stimulated raman scattering in the absolute regime. Phys. Rev. Lett. 104, 255001 (2010)ADSCrossRefGoogle Scholar
  180. 180.
    Mima, K.: Present status and prospects of firex project for fast ignition laser fusion (2008)Google Scholar
  181. 181.
    Mima, K., Fast Ignition Research Group: Present status and future prospects of laser fusion and related high energy density plasma research. AIP Conf. Proc. 740(1), 387–397 (2004)ADSCrossRefGoogle Scholar
  182. 182.
    Mintsev, V., Gryaznov, V., Kulish, M., et al.: Stopping power of proton beam in a weakly non-ideal xenon plasma. Contrib. Plasma Phys. 39(1–2), 45–48 (1999)ADSCrossRefGoogle Scholar
  183. 183.
    Moody, J.D., Michel, P., Divol, L., et al.: Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys. 8(4), 344–349 (2012)CrossRefGoogle Scholar
  184. 184.
    Mori, W.B., Decker, C.D., Hinkel, D.E., Katsouleas, T.: Raman forward scattering of short-pulse high-intensity lasers. Phys. Rev. Lett. 72(10), 1482–1485 (1994)ADSCrossRefGoogle Scholar
  185. 185.
    Moses, E.I.: The National Ignition Facility and the National Ignition Campaign. IEEE Trans. Plasma Sci. 38(4, Part 2, SI), 684–689 (2010). 36th IEEE International Conference on Plasma Science, San Diego, CA, May 31–Jun 05, 2009Google Scholar
  186. 186.
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006)CrossRefGoogle Scholar
  187. 187.
    Nakamura, T., Fukuda, Y., Yogo, A., et al.: High energy negative ion generation by Coulomb implosion mechanism. Phys. Plasmas 16(11), 113106 (2009)ADSCrossRefGoogle Scholar
  188. 188.
    Nakatsutsumi, M., Marques, J.R., Antici, P., et al.: High-power laser delocalization in plasmas leading to long-range beam merging. Nat. Phys. 6(10), 1010–1016 (2010)CrossRefGoogle Scholar
  189. 189.
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)Google Scholar
  190. 190.
    Naumova, N., Schlegel, T., Tikhonchuk, V.T., et al.: Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002 (2009)ADSCrossRefGoogle Scholar
  191. 191.
    Nishihara, K., Amitani, H., Murakami, M., et al.: High energy ions generated by laser driven Coulomb explosion of cluster. Nucl. Instrum. Methods Phys. Res. A 464(1–3), 98–102 (2001)ADSCrossRefGoogle Scholar
  192. 192.
    Norreys, P.A.: Laser-driven particle acceleration. Nat. Photonics 3(8), 423–425 (2009)ADSCrossRefGoogle Scholar
  193. 193.
    Ogura, K., Shizuma, T., Hayakawa, T., et al.: Proton-induced nuclear reactions using compact high-contrast high-intensity laser. Appl. Phys. Express 2(6), 066001 (2009)ADSCrossRefGoogle Scholar
  194. 194.
    Okihara, S., Esirkepov, T.Z., Nagai, K., et al.: Ion generation in a low-density plastic foam by interaction with intense femtosecond laser pulses. Phys. Rev. E 69(2), 026401 (2004)ADSCrossRefGoogle Scholar
  195. 195.
    Pollock, B.B., Clayton, C.E., Ralph, J.E., et al.: Demonstration of a narrow energy spread, \(\sim 0.5\) gev electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107, 045001 (2011)Google Scholar
  196. 196.
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003)ADSCrossRefGoogle Scholar
  197. 197.
    Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74(4–5), 355–361 (2002)ADSCrossRefGoogle Scholar
  198. 198.
    Regan, S.P., Epstein, R., Hammel, B.A., et al.: Hot-spot mix in ignition-scale implosions on the NIF. Phys. Plasmas 19(5), 056307 (2012)ADSCrossRefGoogle Scholar
  199. 199.
    Regan, S.P., Falk, K., Gregori, G., et al.: Inelastic X-ray scattering from shocked liquid deuterium. Phys. Rev. Lett. 109, 265003 (2012)ADSCrossRefGoogle Scholar
  200. 200.
    Robbie, S.O., Doyle, H., Symes, D., Smith, R.: A study of ambient upstream material properties using perpendicular laser driven radiative blast waves in atomic cluster gases. High Energy Density Phys. 8(1), 55–59 (2012)ADSCrossRefGoogle Scholar
  201. 201.
    Robey, H.F., Celliers, P.M., Kline, J.L., et al.: Precision shock tuning on the national ignition facility. Phys. Rev. Lett. 108, 215004 (2012)ADSCrossRefGoogle Scholar
  202. 202.
    Rosmej, O.N., Blazevic, A., Korostiy, S., et al.: Charge state and stopping dynamics of fast heavy ions in dense matter. Phys. Rev. A 72(5), 052901 (2005)ADSCrossRefGoogle Scholar
  203. 203.
    Roth, M., Cowan, T.E., Key, M.H., et al.: Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86(3), 436–439 (2001)ADSCrossRefGoogle Scholar
  204. 204.
    Roth, M., Alber, I., Bagnoud, V., et al.: Proton acceleration experiments and warm dense matter research using high power lasers. Plasma Phys. Control. Fusion 51(12), 124039 (2009)ADSCrossRefGoogle Scholar
  205. 205.
    Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848), 717–720 (2001)ADSCrossRefGoogle Scholar
  206. 206.
    Schlenvoigt, H.P., Haupt, K., Debus, A., et al.: A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4(2), 130–133 (2008)CrossRefGoogle Scholar
  207. 207.
    Schneider, J.R.: FLASH from accelerator test facility to the first single-pass soft X-ray free-electron laser. J. Phys. B: At. Mol. Opt. Phys. 43(19), 194001 (2010)ADSCrossRefGoogle Scholar
  208. 208.
    Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating of crystalline ion beams. J. Phys. B 36(3), 561–571 (2003)ADSCrossRefGoogle Scholar
  209. 209.
    Schroeder, C.B., Esarey, E., van Tilborg, J., Leemans, W.P.: Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69(1), 016501 (2004)ADSCrossRefGoogle Scholar
  210. 210.
    Seibert, M.M., Ekeberg, T., Maia, F.R.N.C., et al.: Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470(2), 78–81 (2011)ADSCrossRefGoogle Scholar
  211. 211.
    Seres, J., Seres, E., Verhoef, A.J., et al.: Laser technology: source of coherent kiloelectronvolt X-rays. Nature 433(02), 596 (2005)ADSCrossRefGoogle Scholar
  212. 212.
    Shao, Y.L., Ditmire, T., Tisch, J.W.G., et al.: Multi-keV electron generation in the interaction of intense laser pulses with Xe clusters. Phys. Rev. Lett. 77(16), 3343–3346 (1996)ADSCrossRefGoogle Scholar
  213. 213.
    Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (Inertial Confinement Nuclear Fusion). Fizmatlit, Moscow (2005)Google Scholar
  214. 214.
    Sheng, Z.M., Wu, H.C., Li, K., Zhang, J.: Terahertz radiation from the vacuum-plasma interface driven by ultrashort intense laser pulses. Phys. Rev. E 69(2), 025401 (2004)ADSCrossRefGoogle Scholar
  215. 215.
    Sheng, Z.M., Mima, K., Zhang, J.: Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12(12), 123103 (2005)ADSCrossRefGoogle Scholar
  216. 216.
    Sheng, Z.M., Mima, K., Zhang, J., Sanuki, H.: Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94(9), 095003 (2005)ADSCrossRefGoogle Scholar
  217. 217.
    Sherrill, M.E., Abdallah, J., Csanak, G., et al.: Spectroscopic characterization of an ultrashort-pulse-laser-driven ar cluster target incorporating both Boltzmann and particle-in-cell models. Phys. Rev. E 73, 066404 (2006)ADSCrossRefGoogle Scholar
  218. 218.
    Shvets, G., Wurtele, J.S., Chiou, T.C., Katsouleas, T.C.: Excitation of accelerating wakefields in inhomogeneous plasmas. IEEE Trans. Plasma Sci. 24(2), 351–362 (1996)ADSCrossRefGoogle Scholar
  219. 219.
    Spears, B.K., Glenzer, S., Edwards, M.J., et al.: Performance metrics for inertial confinement fusion implosions: aspects of the technical framework for measuring progress in the national ignition campaign. Phys. Plasmas 19(5), 056316 (2012)ADSCrossRefGoogle Scholar
  220. 220.
    Spence, N., Katsouleas, T., Muggli, P., et al.: Simulations of Cerenkov wake radiation sources. Phys. Plasmas 8(11), 4995–5005 (2001)ADSCrossRefGoogle Scholar
  221. 221.
    Spence, D.J., Butler, A., Hooker, S.M.: Gas-filled capillary discharge waveguides. J. Opt. Soc. Am. B 20(1), 138–151 (2003)ADSCrossRefGoogle Scholar
  222. 222.
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111 (1998)ADSCrossRefGoogle Scholar
  223. 223.
    Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53(22), 2146–2148 (1988)ADSCrossRefGoogle Scholar
  224. 224.
    Sprangle, P., Esarey, E., Krall, J., Joyce, G.: Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69(15), 2200–2203 (1992)ADSCrossRefGoogle Scholar
  225. 225.
    Sprangle, P., Penano, J.R., Hafizi, B., Kapetanakos, C.A.: Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69(6), 066415 (2004)ADSCrossRefGoogle Scholar
  226. 226.
    Steinke, S., Henig, A., Schnurer, M., et al.: Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28(01), 215–221 (2010)ADSCrossRefGoogle Scholar
  227. 227.
    Stephens, R.B., Akli, K.U., Bartal, T., et al.: Energy injection for fast ignition. Plasma Fusion Res.: Rev. Articles 4, 016 (2009)ADSCrossRefGoogle Scholar
  228. 228.
    Tabak, M., Hammer, J., Glinsky, M.E., et al.: Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1(5), 1626–1634 (1994)ADSCrossRefGoogle Scholar
  229. 229.
    Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95(3), 035001 (2005)ADSCrossRefGoogle Scholar
  230. 230.
    Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Studies of strongly coupled plasmas using intense heavy ion beams at the future FAIR facility: the HEDgeHOB collaboration. Contrib. Plasma Phys. 45(3–4), 229–235 (2005)ADSCrossRefGoogle Scholar
  231. 231.
    Tahir, N.A., Kain, V., Schmidt, R., et al.: The CERN Large Hadron Collider as a tool to study high-energy density matter. Phys. Rev. Lett. 94(13), 135004 (2005)ADSCrossRefGoogle Scholar
  232. 232.
    Tajima, T.: Summary of Working Group 7 on “Exotic acceleration schemes”. AIP Conf. Proc. 569(1), 77–81 (2001)ADSMathSciNetCrossRefGoogle Scholar
  233. 233.
    Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43(4), 267–270 (1979)ADSCrossRefGoogle Scholar
  234. 234.
    Thomas, A.G.R., Krushelnick, K.: Betatron X-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields. Phys. Plasmas 16(10), 103103 (2009)ADSCrossRefGoogle Scholar
  235. 235.
    Togashi, T., Takahashi, E.J., Midorikawa, K., et al.: Extreme ultraviolet free electron laser seeded with high-order harmonic of ti:sapphire laser. Opt. Express 19(1), 317–324 (2011)ADSCrossRefGoogle Scholar
  236. 236.
    Toleikis, S., Fustlin, R., Cao, L., et al.: Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures. High Energy Density Phys. 6(1), 15–20 (2010)ADSCrossRefGoogle Scholar
  237. 237.
    Town, R.P.J., Rosen, M.D., Michel, P.A., et al.: Analysis of the National Ignition Facility ignition hohlraum energetics experiments. Phys. Plasmas 18(5), 056302 (2011)ADSCrossRefGoogle Scholar
  238. 238.
    Treusch, R., Feldhaus, J.: FLASH: new opportunities for (time-resolved) coherent imaging of nanostructures. New J. Phys. 12(3), 035015 (2010)ADSCrossRefGoogle Scholar
  239. 239.
    Tzortzakis, S., Mechain, G., Patalano, G., et al.: Coherent subterahertz radiation from femtosecond infrared filaments in air. Opt. Lett. 27(21), 1944–1946 (2002)ADSCrossRefGoogle Scholar
  240. 240.
    van Tilborg, J., Schroeder, C.B., Esarey, E., Leemans, W.P.: Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams. Laser Part. Beams 22, 415–422 (2004)ADSGoogle Scholar
  241. 241.
    van Tilborg, J., Schroeder, C.B., Filip, C.V., et al.: Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96(1), 014801 (2006)ADSCrossRefGoogle Scholar
  242. 242.
    Wang, S., Clayton, C.E., Blue, B.E., et al.: X-ray emission from betatron motion in a plasma wiggler. Phys. Rev. Lett. 88(13), 135004 (2002)ADSCrossRefGoogle Scholar
  243. 243.
    Wilks, S.C., Langdon, A.B., Cowan, T.E., et al.: Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8(2), 542–549 (2001)ADSCrossRefGoogle Scholar
  244. 244.
    Willingale, L., Petrov, G.M., Maksimchuk, A., et al.: Front versus rear side light-ion acceleration from high-intensity laser–solid interactions. Plasma Phys. Control. Fusion 53(1), 014011 (2011)ADSCrossRefGoogle Scholar
  245. 245.
    Yampolsky, N.A., Fraiman, G.M.: Conversion of laser radiation to terahertz frequency waves in plasma. Phys. Plasmas 13(11), 113108 (2006)ADSCrossRefGoogle Scholar
  246. 246.
    Yan, X.Q., Wu, H.C., Sheng, Z.M., et al.: Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at \(7 \times 10^{21} \mathbf{W}/\mathrm{cm}^{2}\). Phys. Rev. Lett. 103, 135001 (2009)ADSCrossRefGoogle Scholar
  247. 247.
    Yoshii, J., Lai, C.H., Katsouleas, T., et al.: Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett. 79(21), 4194–4197 (1997)ADSCrossRefGoogle Scholar
  248. 248.
    Young, L., Kanter, E.P., Krassig, B., et al.: Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466(07), 56–61 (2010)ADSCrossRefGoogle Scholar
  249. 249.
    Yugami, N., Higashiguchi, T., Gao, H., et al.: Experimental observation of radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev. Lett. 89(6), 065003 (2002)ADSCrossRefGoogle Scholar
  250. 250.
    Zhang, Z.M., He, X.T., Sheng, Z.M., Yu, M.Y.: High-density highly collimated monoenergetic GeV ions from interaction of ultraintense short laser pulse with foil in plasma. Phys. Plasmas 17(4), 043110 (2010)ADSCrossRefGoogle Scholar
  251. 251.
    Zhang, L., Chen, L.M., Yuan, D.W., et al.: Enhanced Kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Opt. Express 19(25), 25812–25822 (2011)ADSCrossRefGoogle Scholar
  252. 252.
    Zhang, L., Chen, L.M., Wang, W.M., et al.: Electron acceleration via high contrast laser interacting with submicron clusters. Appl. Phys. Lett. 100(1), 014104 (2012)ADSCrossRefGoogle Scholar
  253. 253.
    Zhidkov, A., Esirkepov, T., Fujii, T., et al.: Characteristics of light reflected from a dense ionization wave with a tunable velocity. Phys. Rev. Lett. 103, 215003 (2009)ADSCrossRefGoogle Scholar
  254. 254.
    Zigler, A., Ehrlich, Y., Cohen, C., et al.: Optical guiding of high-intensity laser pulses in a long plasma channel formed by a slow capillary discharge. J. Opt. Soc. Am. B 13(1), 68–71 (1996)ADSCrossRefGoogle Scholar
  255. 255.
    Zigler, A., Palchan, T., Bruner, N., et al.: 5.5–7.5 MeV proton generation by a moderate-intensity ultrashort-pulse laser interaction with H2O nanowire targets. Phys. Rev. Lett. 106, 134801 (2011)Google Scholar
  256. 256.
    Zweiback, J., Ditmire, T.: Femtosecond laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis. Phys. Plasmas 8(10), 4545–4550 (2001)ADSCrossRefGoogle Scholar
  257. 257.
    Zweiback, J., Cowan, T.E., Smith, R.A., et al.: Characterization of fusion burn time in exploding deuterium cluster plasmas. Phys. Rev. Lett. 85(17), 3640–3643 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Fortov
    • 1
  1. 1.Russian Academy of Sciences Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations