Advertisement

Relativistic Charged Particle Beams

  • Vladimir E. Fortov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 216)

Abstract

This chapter discusses the possibilities for employing charged particle accelerators, both under operation and under construction, in high energy physics research. The macroscopic volumes of hot plasma produced under beam irradiation open new vistas for studying matter under extreme conditions. We enlarge on the investigations into the properties of matter in relativistic nuclear collisions and consider the physical effects in the generation of quark-gluon plasmas, which emerge in the deconfinement of quarks, including viscosity and interparticle interactions. In the last section we consider the ongoing and projected high energy density physics experiments on the most powerful modern accelerators.

Keywords

Large Hadron Collider International Linear Collider Color Glass Condensate Antiproton Beam Compress Baryonic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    BIOMAT Collaboration: Letter of Intent for: Materials Research with Relativistic Heavy Ion Beams. http://www.gsi.de/fair/experiments/biomat/BIOMAT_LOI_Mat.pdf
  2. 2.
  3. 3.
    The SPARC Collab.: Technical report for the design, construction, commissioning and operation of the SPARC Project: Stored Particle Atomic Physics Collaboration at the FAIR Facility. http://www-linux.gsi.de/~sparc/documents/pdf_files/06_01_06_SPARC_TR.pdf
  4. 4.
    ESFRI, the European Strategy Forum on Research Infrastructures: http://ec.europa.eu/research/infrastructures/index_en.cfm?pg=esfri
  5. 5.
    The HITRAP decelerator and trap facilityGoogle Scholar
  6. 6.
    Report of the NSAC Subcommittee on Comparison of the Rare Isotope Accelerator (RIA) and the Gesellschaft für Schwerionenforschung (GSI) Future Facility (2004): http://science.energy.gov/~/media/np/nsac/pdf/docs/ria_gsi_nsac_022604.pdf
  7. 7.
    CMS Technical Proposal, CERN/LHCC 94-38, LHCC/P1 (1994)Google Scholar
  8. 8.
    An international accelerator facility for beams of ions and antiprotons. Conceptual Design Report, p. 12. GSI (2001)Google Scholar
  9. 9.
    PANDA Collaboration, Technical Progress Report for: PANDA (2005)Google Scholar
  10. 10.
    FAIR Baseline Technical Report, vol. 2 (Accelerator and Scientific Infrastructure), p. 471 (2006)Google Scholar
  11. 11.
    FAIR Baseline Technical Report. GSI, Darmstadt (2006)Google Scholar
  12. 12.
    FAIR Baseline Technical Report, vol. 3A (CBM). GSI, Darmstadt (2006)Google Scholar
  13. 13.
    Aad, G., Abajyan, T., Abbott, B., et al.: Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716(1), 1–29 (2012)Google Scholar
  14. 14.
    Abrikosov, A.A., Khalatnikov, I.M.: The theory of a fermi liquid (the properties of liquid 3 he at low temperatures). Rep. Prog. Phys. 22(1), 329 (1959)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Adams, J., Adler, C., Aggarwal, M.M., et al.: Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics. Phys. Rev. Lett. 92(6), 062301 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Adams, J., Adler, C., Aggarwal, M.M., et al.: Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au + Au collisions at sNN = 200GeV. Phys. Rev. Lett. 92(5), 052302 (2004)Google Scholar
  17. 17.
    Adler, C., Ahammed, Z., Allgower, C., et al.: Disappearance of back-to-back high-pT hadron correlations in central Au+Au collisions at sNN=200 GeV. Phys. Rev. Lett. 90(8), 082302 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Adler, S.S., Afanasiev, S., Aidala, C., et al.: Elliptic flow of identified hadrons in Au + Au collisions at sNN = 200GeV. Phys. Rev. Lett. 91(18), 182301 (2003)Google Scholar
  19. 19.
    Aleksan, R., Amerman, L., Aston, D., et al.: Test of a large scale prototype of the DIRC, a Cherenkov imaging detector based on total internal reflection for BaBar at PEP-II. Nucl. Instrum. Methods Phys. Res. A 397(2–3), 261–282 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Ali Khan, A., Aoki, S., Burkhalter, R., et al.: Equation of state in finite-temperature qcd with two flavors of improved Wilson quarks. Phys. Rev. D 64, 074510 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Alt, C., Anticic, T., Baatar, B., et al.: Directed and elliptic flow of charged pions and protons in Pb + Pb collisions at 4A and 158AGeV. Phys. Rev. C 68(3), 034903 (2003)Google Scholar
  22. 22.
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. – Usp. 27(3), 181–205 (1984)Google Scholar
  23. 23.
    Aoki, Y., Fodor, Z., Katz, S.D., Szab, K.K.: The equation of state in lattice qcd: with physical quark masses towards the continuum limit. J. High Energy Phys. 2006(01), 089 (2006)CrossRefGoogle Scholar
  24. 24.
    Arnold, P., Moore, G.D., Yaffe, L.G.: Transport coefficients in high temperature gauge theories, 2. Beyond leading log. J. High Energy Phys. 2003(05), 051 (2003)CrossRefGoogle Scholar
  25. 25.
    Asner, D.M., Phillips, T.J., Apollinari, G., et al.: P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab (2009)Google Scholar
  26. 26.
    Atoyan, G., Gladyshev, V., Gninenko, S., et al.: Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout. Nucl. Instrum. Methods Phys. Res. A 320(1–2), 144–154 (1992)Google Scholar
  27. 27.
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)Google Scholar
  28. 28.
    Baldin, A.M., Malakhov, A.I., Sissakian, A.N.: Some problems of relativistic nuclear physics and multiple particle production (in Russian). Phys. Elem. Part. At. Nucl. 32(7), 6 (2001)Google Scholar
  29. 29.
    Barish, B., Walker, N., Yamamoto, H.: Building the next generation collider. Sci. Am. 298(2), 46–51 (2008)CrossRefGoogle Scholar
  30. 30.
    Basko, M.M.: Magnetized implosions driven by intense ion beams. Phys. Plasmas 7(11), 4579–4589 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Basko, M.M., Churazov, M.D., Aksenov, A.G.: Prospects of heavy ion fusion in cylindrical geometry. Laser Part. Beams 20(03), 411–414 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Batani, D., Koenig, M., Lower, T., et al.: Measuring EOS with lasers. Europhys. News 27, 210 (1996)Google Scholar
  33. 33.
    Batani, D., Morelli, A., Tomasini, M., et al.: Equation of state data for iron at pressures beyond 10 Mbar. Phys. Rev. Lett. 88, 235502 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Baumung, K., Bluhm, H.J., Goel, B., et al.: Shock-wave physics experiments with high-power proton beams. Laser Part. Beams 14(2), 181 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    Baym, G.: Nuclear matter under extreme conditions. Nucl. Phys. A 702(1-4), 3–12 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    Baym, G., Chin, S.A.: Can a neutron star be a giant MIT bag? Phys. Lett. B 62(2), 241–244 (1976)ADSCrossRefGoogle Scholar
  37. 37.
    Bernard, C., Blum, T., DeTar, C., et al.: Equation of state for two flavor QCD at Nt = 6. Phys. Rev. D 55(11), 6861–6869 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Bernard, C., Burch, T., DeTar, C., et al.: QCD equation of state with 2 + 1 flavors of improved staggered quarks. Phys. Rev. D 75, 094505 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Bethe, H.A.: Handbuch fur Physik, vol. 24/2. Springer, Berlin (1933)Google Scholar
  40. 40.
    Blaschke, D., et al. (eds.): Searching for a QCD mixed phase at the Nuclotron-based Ion Collider fAcility (NICA white paper) (2009)Google Scholar
  41. 41.
    Bluhm, R., Kostelecký, V.A., Russell, N.: CPT and Lorentz tests in Penning traps. Phys. Rev. D 57, 3932–3943 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Boyd, G., Engels, J., Karsch, F., et al.: Thermodynamics of su(3) lattice gauge theory. Nucl. Phys. B 469(3), 419–444 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    Brustein, R., Medved, A.J.M.: Ratio of shear viscosity to entropy density in generalized theories of gravity. Phys. Rev. D 79, 021901 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Bruun, G.M., Smith, H.: Frequency and damping of the scissors mode of a fermi gas. Phys. Rev. A 76, 045602 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Bruun, G.M., Smith, H.: Shear viscosity and damping for a fermi gas in the unitarity limit. Phys. Rev. A 75, 043612 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Chapline, G., Nauenberg, M.: Asymptotic freedom and the baryon-quark phase transition. Phys. Rev. D 16(2), 450–456 (1977)ADSCrossRefGoogle Scholar
  47. 47.
    Chatrchyan, S., Khachatryan, V., Sirunyan, A., et al.: Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716(1), 30–61 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Cheng, M., Christ, N.H., Datta, S., et al.: QCD equation of state with almost physical quark masses. Phys. Rev. D 77, 014511 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    Cheng, M., Ejiri, S., Hegde, P., et al.: Equation of state for physical quark masses. Phys. Rev. D 81, 054504 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Chernodub, M.N., Nakamura, A., Zakharov, V.I.: Manifestations of magnetic vortices in the equation of state of a yang-mills plasma. Phys. Rev. D 78, 074021 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Chiang, I.H., Garber, E., Inagaki, T., et al.: CsI endcap photon detector for a K\(^{p}m \rightarrow\) n+vv experiment at BNL. IEEE Trans. Nucl. Sci. 42(4), 394–400 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    Cho, S., Zahed, I.: Classical strongly coupled quark-gluon plasma. IV. Thermodynamics. Phys. Rev. C 80, 014906 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Collins, J.C., Perry, M.J.: Superdense matter: neutrons or asymptotically free quarks? Phys. Rev. Lett. 34(21), 1353–1356 (1975)ADSCrossRefGoogle Scholar
  54. 54.
    Cremonini, S.: The shear viscosity to entropy ratio: a status report. Mod. Phys. Lett. B25, 1867–1888 (2011)MathSciNetADSCrossRefzbMATHGoogle Scholar
  55. 55.
    Csernai, L.P., Fai, G., Gale, C., Osnes, E.: Nuclear equation of state with momentum-dependent interactions. Phys. Rev. C 46, 736–747 (1992)ADSCrossRefGoogle Scholar
  56. 56.
    Csikor, F., Egri, G., Fodor, Z., et al.: The QCD equation of state at finite Tμ on the lattice. Prog. Theor. Phys. Supp. 153, 93–105 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    Cuneo, M.E., Adams, R.G., Bailey, J.E., et al.: Generating high-brightness light ion beams for inertial fusion energy. In: Proceedings of IFP/14 (1998)Google Scholar
  58. 58.
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    Curtis, S.B.: Single track effects, biostack and risk assessment. Radiat. Meas. 23(1), 5–8 (1994)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Curtis, S., Vazquez, M., Wilson, J., et al.: Cosmic ray hit frequencies in critical sites in the central nervous system. Adv. Space Res. 22(2), 197–207 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    De, J.N., Agrawal, B.K., Samaddar, S.K.: Equation of state of finite nuclei and liquid-gas phase transition. Phys. Rev. C 59, R1–R4 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    Demir, N., Bass, S.A.: Shear-viscosity to entropy-density ratio of a relativistic hadron gas. Phys. Rev. Lett. 102, 172302 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    DeTar, C., Levkova, L., Gottlieb, S., et al.: QCD thermodynamics with nonzero chemical potential at N t = 6 and effects from heavy quarks. Phys. Rev. D 81, 114504 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    Dremin, I.M.: Physics at the large hadron collider. Phys. Usp. 52(6), 541–548 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    Dremin, I.M., Leonidov, A.V.: The quark - gluon medium. Phys. Usp. 53(11), 1123–1149 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    Durante, M.: Applications of particle microbeams in space radiation research. J. Radiat. Res. 50(Suppl. A), A55–A58 (2009)Google Scholar
  67. 67.
    Durante, M., Cucinotta, F.A.: Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer 8, 465–472 (2008)CrossRefGoogle Scholar
  68. 68.
    Efremov, V.P., Pikuz Jr., S.A., Faenov, A.Y., et al.: Study of the energy release region of a heavy-ion flux in nanomaterials by X-ray spectroscopy of multicharged ions. JETP Lett. 81(8), 378 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    Ekström, C.: Internal targets. CERN Report 92-01, pp. 120–146 (1992)Google Scholar
  70. 70.
    Emel’yanov, V.M., Timoshenko, S.L., Strikhanov, M.N.: Vvedenie v relyativistskuyu yadernuyu fiziku (Introduction to Relativistic Nuclear Physics). Fizmatlit, Moscow (2011)Google Scholar
  71. 71.
    Fodor, Z., Katz, S.D.: Critical point of QCD at finite T and μ, lattice results for physical quark masses. J. High Energy Phys. 2004(04), 050 (2004)Google Scholar
  72. 72.
    Föhl, K.: The PANDA detector at the future FAIR laboratory. Eur. Phys. J. Spec. Top. 162, 213–220 (2008). doi:10.1140/epjst/e2008-00796-5Google Scholar
  73. 73.
    Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 50(4), 333 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    Fortov, V.E.: Ekstremal’nye sostoyaniya veshchestva (Extreme States of Matter). Fizmatlit, Moscow (2009) [Translated into English: Extreme States of Matter. Series: The Frontiers Collection. Springer, Berlin/Heidelberg (2011)]Google Scholar
  75. 75.
    Fortov, V.E.: Uravneniya sostoyaniya veshchestva (Equations of State of Matter). Fizmatlit, Moscow (2013)Google Scholar
  76. 76.
    Fortov, V., Shutov, A.: Numerical simulations of nonstationary fronts and interfaces by the Godunov method in moving grids. Nucl. Sci. Eng. 123, 169 (1996)Google Scholar
  77. 77.
    Fortov, V., Rudakov, L., Ni, A.: Application of intense relativistic electron beams in high dynamic pressure thermophysics. Sov. Therm. Phys. Rev. 371, 589 (1992)Google Scholar
  78. 78.
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: current status, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005)MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  80. 80.
    Fortov, V.E., Ilkaev, R.I., Arinin, V.A., et al.: Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99(18), 185001 (2007)ADSCrossRefGoogle Scholar
  81. 81.
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008)ADSCrossRefGoogle Scholar
  82. 82.
    Fortov, V.E., Petrov, O.F., Vaulina, O.S., Timirkhanov, R.A.: Viscosity of a strongly coupled dust component in a weakly ionized plasma. Phys. Rev. Lett. 109, 055002 (2012)ADSCrossRefGoogle Scholar
  83. 83.
    Fortov, V.E., Sharkov, B.Y., Stöcker, H.: European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program. Phys. Usp. 55(6), 582–602 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    Freedman, B.A., McLerran, L.D.: Fermions and gauge vector mesons at finite temperature and density. III. The ground-state energy of a relativistic quark gas. Phys. Rev. D 16(4), 1169–1185 (1977)Google Scholar
  85. 85.
    Friman, B., Höhne, C., Knoll, J., et al. (eds.): The CBM Physics Book. Lecture Notes in Physics, vol. 814, 1st edn. Springer, Berlin (2010)Google Scholar
  86. 86.
    Geissel, H., Scheidenberger, C.: Slowing down of relativistic heavy ions and new applications. Nucl. Instrum. Methods Phys. Res. B 136–138(0), 114–124 (1998). Ion Beam AnalysisGoogle Scholar
  87. 87.
    Gelman, B.A., Shuryak, E.V., Zahed, I.: Classical strongly coupled quark-gluon plasma. II. Screening and equation of state. Phys. Rev. C 74, 044909 (2006)Google Scholar
  88. 88.
    Gezerlis, A., Carlson, J.: Strongly paired fermions: cold atoms and neutron matter. Phys. Rev. C 77(3), 032801 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin/Heidelberg (2001)CrossRefGoogle Scholar
  90. 90.
    Ginzburg, V.L.: On superconductivity and superfluidity (what I have and have not managed to do), as well as on the “physical minimum” at the beginning of the XXI century (December 8, 2003). Phys. Usp. 47(11), 1155 (2004)ADSCrossRefGoogle Scholar
  91. 91.
    Glendenning, N.K.: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, 2nd edn. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  92. 92.
    Golovkov, M.S., Grigorenko, L.V., Ter-Akopian, G.M., et al.: The8He and10He spectra studied in the reaction. Phys. Lett. B 672(1), 22–29 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    Goto, A., Yano, Y., Katayama, T.: RIKEN RI-Beam Factory project. J. Phys. G: Nucl. Part. Phys. 24(8), 1341 (1998)ADSCrossRefGoogle Scholar
  94. 94.
    Gregori, G., Glenzer, S.H., Rozmus, W., et al.: Theoretical model of X-ray scattering as a dense matter probe. Phys. Rev. E 67, 026412 (2003)ADSCrossRefGoogle Scholar
  95. 95.
    Gross, D.J., Politzer, H.D., Wilczek, F.: Asymptotic freedom and quantum chromodynamics: the key to the understanding of the strong nuclear forces. Nobel Prize in Physics (2004)Google Scholar
  96. 96.
    Gubser, S.S., Nellore, A.: Mimicking the QCD equation of state with a dual black hole. Phys. Rev. D 78, 086007 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    Gyulassy, M., McLerran, L.: New forms of QCD matter discovered at RHIC. Nucl. Phys. A 750(1), 30–63 (2005)ADSCrossRefGoogle Scholar
  98. 98.
    Gyulassy, M., Plumer, M.: Jet quenching as a probe of dense matter. Nucl. Phys. A 527, 641–644 (1991)ADSCrossRefGoogle Scholar
  99. 99.
    Gyulassy, M., Plumer, M., Thoma, M., Wang, X.N.: High pt probes of nuclear collisions. Nucl. Phys. A 538, 37–49 (1992)ADSCrossRefGoogle Scholar
  100. 100.
    Haberer, T., Becher, W., Schardt, D., Kraft, G.: Magnetic scanning system for heavy ion therapy. Nucl. Instrum. Methods Phys. Res. A 330(1–2), 296–305 (1993)ADSCrossRefGoogle Scholar
  101. 101.
    Habs, D., Groß, M., Assmann, W., et al.: The Munich accelerator for fission fragments MAFF. Nucl. Instrum. Methods Phys. Res. B 204, 739–745 (2003)ADSCrossRefGoogle Scholar
  102. 102.
    Hamieh, S., Letessier, J., Rafelski, J.: Quark-gluon plasma fireball. Phys. Rev. C 62, 064901 (2000)ADSCrossRefGoogle Scholar
  103. 103.
    Hands, S.: The phase diagram of QCD. Contemp. Phys. 42(4), 209–225 (2001)ADSCrossRefGoogle Scholar
  104. 104.
    Heinz, U.W.: Concepts of heavy-ion physics. In: High Energy Physics - Phenomenology. arXiv:hep-ph/0407360 (2004)Google Scholar
  105. 105.
    Herfurth, F.: Precise nuclear physics measurements with ion traps. Int. J. Mod. Phys. E 18, 392–404 (2009)ADSCrossRefGoogle Scholar
  106. 106.
    Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., et al.: Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9(9), 3651–3654 (2002)ADSCrossRefGoogle Scholar
  107. 107.
    Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., et al.: Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9(9), 3651–3654 (2002)ADSCrossRefGoogle Scholar
  108. 108.
    Hofmann, S., Münzenberg, G.: The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733–767 (2000)ADSCrossRefGoogle Scholar
  109. 109.
    Holmes-Siedle, A., Adams, L.: Hand Book of Radiation Effects. Oxford University Press, Oxford (2002)Google Scholar
  110. 110.
    Jacak, B., Steinberg, P.: Creating the perfect liquid in heavy-ion collisions. Phys. Today 63(5), 39–43 (2010)ADSCrossRefGoogle Scholar
  111. 111.
    Jacobs, P., Klay, J.: Jets and high p t hadrons in dense matter: recent results from star. arXiv:nucl-ex/0308023 (2003)Google Scholar
  112. 112.
    Johnson, C.V., Steinberg, P.: What black holes teach about strongly coupled particles. Phys. Today 63(5), 29–33 (2010)ADSCrossRefGoogle Scholar
  113. 113.
    Kalashnikov, O.K., Klimov, V.V.: Phase transition in the quark-gluon plasma. Phys. Lett. B 88(3–4), 328–330 (1979)ADSCrossRefGoogle Scholar
  114. 114.
    Kambara, T., Kanai, Y., Kojima, T., et al.: Acoustic emission from fast heavy-ion irradiation on solids. Nucl. Instrum. Methods Phys. Res. B 164–165, 415–419 (2000)CrossRefGoogle Scholar
  115. 115.
    Kambara, T., Kageyama, K., Kanai, Y., et al.: Elastic wave from fast heavy ion irradiation on solids. Nucl. Instrum. Methods Phys. Res. B 193(1–4), 371–375 (2002)ADSCrossRefGoogle Scholar
  116. 116.
    Kanel, G.I., Razorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and Properties of Condensed Matter. Springer, New York (2004)CrossRefGoogle Scholar
  117. 117.
    Kapusta, J.I.: Quantum chromodynamics at high temperature. Nucl. Phys. B 88(3–4), 461–498 (1979)ADSCrossRefGoogle Scholar
  118. 118.
    Kapusta, J.I.: Equation of state and phase fluctuations near the chiral critical point. Phys. Rev. C 81, 055201 (2010)ADSCrossRefGoogle Scholar
  119. 119.
    Karsch, F.: Lattice QCD at high temperature and the QGP. arXiv:hep-lat/0601013 (2006)Google Scholar
  120. 120.
    Karsch, F., Laermann, E., Peikert, A.: The pressure in 2, 2+1 and 3 flavour QCD. Phys. Lett. B 478(4), 447–455 (2000)ADSCrossRefGoogle Scholar
  121. 121.
    Kester, O., Sieber, T., Emhofer, S., et al.: Accelerated radioactive beams from REX-ISOLDE. Nucl. Instrum. Methods Phys. Res. B 204, 20–30 (2003)ADSCrossRefGoogle Scholar
  122. 122.
    Khalatnikov, I.M.: An Introduction to the Theory of Superfluidity. Benjamin, New York (1965)Google Scholar
  123. 123.
    Kleppner, D.: Professor Feshbach and His Resonance. Phys. Today 57(8), 12–13 (2004)CrossRefGoogle Scholar
  124. 124.
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87(22), 225501 (2001)ADSCrossRefGoogle Scholar
  125. 125.
    Kobayashi, M.: CP violation and flavour mixing. Nobel Lecture, December 8, 2008 (2008). http://www.nobelprize.org/nobel_prizes/physics/laureates/2008/kobayashi_lecture.pdf Google Scholar
  126. 126.
    Kolb, P.F., Sollfrank, J., Heinz, U.: Anisotropic transverse flow and the quark-hadron phase transition. Phys. Rev. C 62, 054909 (2000)ADSCrossRefGoogle Scholar
  127. 127.
    Kolomietz, V.M., Sanzhur, A.I., Shlomo, S., Firin, S.A.: Equation of state and phase transitions in asymmetric nuclear matter. Phys. Rev. C 64, 024315 (2001)ADSCrossRefGoogle Scholar
  128. 128.
    Korobenko, V.N., Rakhel’, A.D., Savvatimskii, A.I., Fortov, V.E.: Measurement of the electric conductivity of tungsten in a continuous liquid-to-gas transition. Plasma Phys. Rep. 28(12), 1008 (2002)Google Scholar
  129. 129.
    Koshkarev, D.G., Churazov, M.D.: Inertsionnyi termoyadernyi sintez na baze tyazheloionnogo uskoritelya-drivera i tsilindricheskoi misheni (Inertial thermonuclear fusion based on a heavy-ion accelerator-driver and cylindrical target). Atom. Energy 91(1), 47–54 (2001)CrossRefGoogle Scholar
  130. 130.
    Kovtun, P., Son, D.T., Starinets, A.O.: Holography and hydrodynamics: diffusion on stretched horizons. J. High Energy Phys. 2003(10), 064 (2003)MathSciNetCrossRefGoogle Scholar
  131. 131.
    Kovtun, P.K., Son, D.T., Starinets, A.O.: Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005)ADSCrossRefGoogle Scholar
  132. 132.
    Kozyreva, A., Basko, M., Rosmej, F., et al.: Dynamic Confinement of Targets Heated Quasy-isochorically with heavy ion beams. GSI-2003-2 Annual Report p. 27 (2003)Google Scholar
  133. 133.
    Kraft, G.: Radiobiological effects of very heavy ions: Inactivation, induction of chromosome aberrations and strand break. Nucl. Sci. Appl. 3, 1 (1987)Google Scholar
  134. 134.
    Kramer, M., Kraft, G.: Calculations of heavy-ion track structure. Radiat. Environ. Biophys. 33, 91–109 (1994)CrossRefGoogle Scholar
  135. 135.
    Krasnikov, N.V., Matveev, V.A.: The search for new physics at the Large Hadron Collider. Phys. Usp. 47(7), 643 (2004)ADSCrossRefGoogle Scholar
  136. 136.
    Kratz, K.L., Pfeiffer, B., Thielemann, F.K., Walters, W.: Nuclear structure studies at ISOLDE and their impact on the astrophysical r-process. Hyperfine Interact. 129, 185–221 (2000). doi:10.1023/A:1012694723985ADSCrossRefGoogle Scholar
  137. 137.
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading, MA (1988)Google Scholar
  138. 138.
    Kuehl, T., Bock, R., Borneis, S., et al.: PHELIX status and first experiments. Hyperfine Interact. 162, 55–62 (2005). doi:10.1007/s10751-005-9203-3ADSCrossRefGoogle Scholar
  139. 139.
    Lampert, M.A., Molina-París, C.: Effective equation of state for a spherically expanding pion plasma. Phys. Rev. D 57, 83–92 (1998)ADSCrossRefGoogle Scholar
  140. 140.
    Langanke, L.: A FAIR chance for nuclear astrophysics. In: Kick-Off Event and Symposium on the Physics at FAIR (2007)Google Scholar
  141. 141.
    Letessier, J., Rafelski, J.: Qcd equations of state and the quark-gluon plasma liquid model. Phys. Rev. C 67, 031902 (2003)Google Scholar
  142. 142.
    Lévai, P., Heinz, U.: Massive gluons and quarks and the equation of state obtained from SU(3) lattice QCD. Phys. Rev. C 57, 1879–1890 (1998)ADSCrossRefGoogle Scholar
  143. 143.
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  144. 144.
    Litvinov, Y., Geissel, H., Radon, T., et al.: Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility. Nucl. Phys. A 756(1–2), 3–38 (2005)ADSCrossRefGoogle Scholar
  145. 145.
    Loiselet, M., Berger, G., Breyne, D., et al.: Production and acceleration of Radioactive Beams at Louvain-la-Neuve. In: 14th International Conference on Cyclotrons and Their Application, Cape Town, p. 629 (1995)Google Scholar
  146. 146.
    Gyulassy, M.: Relativistic heavy ions and QGP at FAIR (2007)Google Scholar
  147. 147.
    MacFarlane, J.J., Wang, P., Bailey, J., et al.: Analysis of Kα line emission from aluminum plasmas created by intense proton beams. Phys. Rev. E 47(4), 2748–2758 (1993)Google Scholar
  148. 148.
    Marletta, G., Bouffard, S., Neumenn, R. (eds.): Proceedings of 5th International Symposium on Swift Heavy Ions in Matter (SHIM 2002), Giardini Naxos, 19–23 May 2002Google Scholar
  149. 149.
    Maury, S.: The Antiproton Decelerator (AD). CERN/PS 99-50 (HP) (1999)Google Scholar
  150. 150.
    Meisinger, P.N., Miller, T.R., Ogilvie, M.C.: Phenomenological equations of state for the quark-gluon plasma. Phys. Rev. D 65, 034009 (2002)ADSCrossRefGoogle Scholar
  151. 151.
    Meshkov, I., Sidorin, A. (eds.): Design and construction of Nuclotron-based Ion Collider fAcility (NICA), conceptual design report (2008)Google Scholar
  152. 152.
    Mesyats, G.A.: Impul’snaya energetika i elektronika (Pulse Power and Electronics). Nauka, Moscow (2004)Google Scholar
  153. 153.
    Meyer, H.B.: Calculation of the shear viscosity in su(3) gluodynamics. Phys. Rev. D 76, 101701 (2007)ADSCrossRefGoogle Scholar
  154. 154.
    Mintsev, V., Gryaznov, V., Kulish, M., et al.: Stopping power of proton beam in a weakly non-ideal xenon plasma. Contrib. Plasma Phys. 39(1–2), 45–48 (1999)ADSCrossRefGoogle Scholar
  155. 155.
    Mittig, W., Villari, A.C.C.: GANIL and the SPIRAL2 project. In: 4th International Conference on Exotic Nuclei and Atomic Masses, ENAM’04, Pine Mountain, GA (2004)Google Scholar
  156. 156.
    Möhl, D.: Stochastic cooling. In: CAS-87. CERN 87-03, vol. 2, pp. 453–533 (1987)Google Scholar
  157. 157.
    Mrowczynski, S., Thoma, M.H.: What do electromagnetic plasmas tell us about the quark-gluon plasma? Annu. Rev. Nucl. Part. Sci. 57(1), 61–94 (2007)ADSCrossRefGoogle Scholar
  158. 158.
    Nakamura, T., Wada, M., Okada, K., et al.: Laser spectroscopy of7, 10Be+ in an online ion trap. Phys. Rev. A 74, 052503 (2006)ADSCrossRefGoogle Scholar
  159. 159.
    Namekawa, Y., Aoki, S., Burkhalter, R., et al.: Thermodynamics of SU(3) gauge theory on anisotropic lattices. Phys. Rev. D 64, 074507 (2001)ADSCrossRefGoogle Scholar
  160. 160.
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)Google Scholar
  161. 161.
    Neidherr, D., Audi, G., Beck, D., et al.: Discovery of229Rn and the structure of the heaviest Rn and Ra isotopes from penning-trap mass measurements. Phys. Rev. Lett. 102, 112501 (2009)ADSCrossRefGoogle Scholar
  162. 162.
    Neumayr, J.B., Beck, L., Habs, D., et al.: The ion-catcher device for SHIPTRAP. Nucl. Instrum. Methods Phys. Res. B 244(2), 489–500 (2006)ADSCrossRefGoogle Scholar
  163. 163.
    NICA: NICA project site: http://nica.jinr.ru/
  164. 164.
    Nörtershäuser, W., Tiedemann, D., Žáková, M., et al.: Nuclear charge radii of7, 9, 10Be and the one-neutron halo nucleus11Be. Phys. Rev. Lett. 102, 062503 (2009)CrossRefGoogle Scholar
  165. 165.
    Novikov, I.D.: “Big Bang” echo (cosmic microwave background observations). Phys. Usp. 44(8), 817 (2001)ADSCrossRefGoogle Scholar
  166. 166.
    Novotny, R., Beck, R., Doring, W., et al.: Electromagnetic calorimetry with PbWO4 in the energy regime below 1 GeV. IEEE Trans. Nucl. Sci. 47(4), 1499–1502 (2000)ADSCrossRefGoogle Scholar
  167. 167.
    O’Hara, K.M., Hemmer, S.L., Gehm, M.E., et al.: Observation of a strongly interacting degenerate fermi gas of atoms. Science 298(5601), 2179–2182 (2002)ADSCrossRefGoogle Scholar
  168. 168.
    Okamoto, M., Ali Khan, A., Aoki, S., et al.: Equation of state for pure SU(3) gauge theory with renormalization group improved action. Phys. Rev. D 60, 094510 (1999)ADSCrossRefGoogle Scholar
  169. 169.
    Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990) [English Transl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]Google Scholar
  170. 170.
    Okun’, L.B.: Azy fiziki. Ochen’ kratkii putevoditel’ (The Basics of Physics. A Very Brief Guide). Fizmatlit, Moscow (2012)Google Scholar
  171. 171.
    Ollitrault, J.Y.: Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46(1), 229–245 (1992)ADSCrossRefGoogle Scholar
  172. 172.
    Orr, N.A., Anantaraman, N., Austin, S.M., et al.: Momentum distributions of9Li fragments from the breakup of11Li and the neutron halo. Phys. Rev. C 51, 3116–3126 (1995)ADSCrossRefGoogle Scholar
  173. 173.
    Pal, S.: Shear viscosity to entropy density ratio of a relativistic Hagedorn resonance gas. Phys. Lett. B684, 211–215 (2010)ADSCrossRefGoogle Scholar
  174. 174.
    Park, B.Y., Lee, H.J., Vento, V.: Skyrmions at finite density and temperature: the chiral phase transition. Phys. Rev. D 80, 036001 (2009)ADSCrossRefGoogle Scholar
  175. 175.
    Parkhomchuk, V.V., Skrinskii, A.N.: Electron cooling: 35 years of development. Phys. Usp. 43(5), 433–452 (2000)ADSCrossRefGoogle Scholar
  176. 176.
    Pfeiffer, B., Kratz, K.L., Thielemann, F.K., Walters, W.: Nuclear structure studies for the astrophysical r-process. Nucl. Phys. A 693(1–2), 282–324 (2001)ADSCrossRefGoogle Scholar
  177. 177.
    Pieranski, P.: Colloidal crystals. Contemp. Phys. 24(1), 2573 (1983)CrossRefGoogle Scholar
  178. 178.
    Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H., Temporal, M.: Generation of a hollow ion beam: calculation of the rotation frequency required to accommodate symmetry constraint. Phys. Rev. E 67, 017501 (2003)ADSCrossRefGoogle Scholar
  179. 179.
    Policastro, G., Son, D.T., Starinets, A.O.: Shear viscosity of strongly coupled n = 4 supersymmetric yang-mills plasma. Phys. Rev. Lett. 87, 081601 (2001)ADSCrossRefGoogle Scholar
  180. 180.
    Quigg, C.: The coming revolutions in particle physics. Sci. Am. 298(2), 46 (2008)CrossRefGoogle Scholar
  181. 181.
    Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In: Proceedings of 13th International Conference on High Power Particle Beams, Nagaoka (2000)Google Scholar
  182. 182.
    Radon, T., Kerscher, T., Schlitt, B., et al.: Schottky mass measurements of cooled proton-rich nuclei at the GSI experimental storage ring. Phys. Rev. Lett. 78, 4701–4704 (1997)ADSCrossRefGoogle Scholar
  183. 183.
    Randrup, J., Cleymans, J.: Exploring high-density baryonic matter: maximum freeze-out density. In: Searching for a QCD Mixed Phase at the Nuclotron-Based Ion Collider fAcility (NICA White Paper), p. 16. JINR, Dubna (2009)Google Scholar
  184. 184.
    Randrup, J., Ruuskanen, P.V.: Thermodynamic consistency of the equation of state of strongly interacting matter. Phys. Rev. C 69, 047901 (2004)ADSCrossRefGoogle Scholar
  185. 185.
    Regan, P., Garnsworthy, A., Pietri, S., et al.: Isomer spectroscopy using relativistic projectile fragmentation at the N=Z line for A\(\sim 80 \rightarrow 90\). Nucl. Phys. A 787(1–4), 491–498 (2007). Proceedings of the Ninth International Conference on Nucleus-Nucleus Collisions (NN2006)Google Scholar
  186. 186.
    Reich, H., Bourgeois, W., Franzke, B., et al.: The ESR internal target. Nucl. Phys. A 626(1–2), 417–425 (1997)ADSCrossRefGoogle Scholar
  187. 187.
    Riordan, M., Zajc, W.A.: The first few microseconds. Sci. Am. 294(5), 34A–41 (2006)ADSCrossRefGoogle Scholar
  188. 188.
    Rosmej, O.N., Blazevic, A., Korostiy, S., et al.: Charge state and stopping dynamics of fast heavy ions in dense matter. Phys. Rev. A 72(5), 052901 (2005)ADSCrossRefGoogle Scholar
  189. 189.
    Rubakov, V.A.: Large and infinite extra dimensions. Phys. Usp. 44(9), 871 (2001)ADSCrossRefGoogle Scholar
  190. 190.
    Rubakov, V.A.: Introduction to cosmology. PoS RTN2005, 003 (2005)Google Scholar
  191. 191.
    Rubakov, V.A.: Hierarchies of fundamental constants (to items Nos 16, 17, and 27 from Ginzburg’s list). Phys. Usp. 50(4), 390 (2007)ADSCrossRefGoogle Scholar
  192. 192.
    Rubakov, V.A.: Large hadron collider’s discovery of a new particle with Higgs boson properties. Phys. Usp. 55(10), 949–957 (2012)ADSCrossRefGoogle Scholar
  193. 193.
    Rubio, B., Nilsson, T.: NuSTAR. Nucl. Phys. News 16(1), 9–14 (2006)CrossRefGoogle Scholar
  194. 194.
    Rudolph, D., Hoischen, R., Hellström, M., et al.: Isospin symmetry and proton decay: identification of the 10+ isomer in54Ni. Phys. Rev. C 78, 021301 (2008)ADSCrossRefGoogle Scholar
  195. 195.
    Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)CrossRefzbMATHGoogle Scholar
  196. 196.
    Schäfer, T.: Ratio of shear viscosity to entropy density for trapped fermions in the unitarity limit. Phys. Rev. A 76, 063618 (2007)ADSCrossRefGoogle Scholar
  197. 197.
    Scheidenberger, C., Geissel, H.: Penetration of relativistic heavy ions through matter. Nucl. Instrum. Methods Phys. Res. B 135(1–4), 25–34 (1998)ADSCrossRefGoogle Scholar
  198. 198.
    Scheidenberger, C., Geissel, H., Maier, M., et al.: Energy and range focusing of in-flight separated exotic nuclei — a study for the energy-buncher stage of the low-energy branch of the Super-FRS. Nucl. Instrum. Methods Phys. Res. B 204, 119–123 (2003)ADSCrossRefGoogle Scholar
  199. 199.
    Schiwietz, G., Grande, P., Skogvall, B., et al.: Influence of nuclear track potentials in insulators on the emission of target Auger electrons. Phys. Rev. Lett. 69, 628–631 (1992)ADSCrossRefGoogle Scholar
  200. 200.
    Schuch, R., Stöhlker, T. (for the SPARC-Collab.): Stored particle atomic physics research collaboration: atomic physics with stored highly-charged heavy ions at the future fair facility. http://www-linux.gsi.de/~sparc/documents/pdf_files/sparc_stori05.pdf Schuch, R., Stöhlker, T.: Stored Particle Atomic Physics Research Collaboration: Atomic Physics with Stored Highly-Charged Heavy Ions at the Future FAIR Facility
  201. 201.
    Schwarz, S., Bollen, G., Lawton, D., et al.: The low-energy-beam and ion-trap facility at NSCL/MSU. Nucl. Instrum. Methods Phys. Res. B 204, 507–511 (2003)ADSCrossRefGoogle Scholar
  202. 202.
    Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  203. 203.
    Senger, P.: Status of the CBM experiment at FAIR. CBM Progress Report, p. 1 (2009)Google Scholar
  204. 204.
    Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (Inertial Confinement Nuclear Fusion). Fizmatlit, Moscow (2005)Google Scholar
  205. 205.
    Shuryak, E.V.: Quark-gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. B 78(1), 150–153 (1978)ADSCrossRefGoogle Scholar
  206. 206.
    Shuryak, E.V.: Quantum chromodynamics and the theory of superdense matter. Phys. Rep. 61(2), 71–158 (1980)MathSciNetADSCrossRefGoogle Scholar
  207. 207.
    Shuryak, E.: Physics of strongly coupled quark–gluon plasma. Prog. Part. Nucl. Phys. 62(1), 48–101 (2009)ADSCrossRefGoogle Scholar
  208. 208.
    Sissakian, A., Sorin, A.S.: The QCD Phase Diagram NICA, JINR Communication. JINR, Dubna (2009)Google Scholar
  209. 209.
    Sissakian, A.N., Sorin, A.S.: The nuclotron-based ion collider facility (NICA) at JINR: new prospects for heavy ion collisions and spin physics. J. Phys. G: Nucl. Part. Phys. 36(6), 064069 (2009)Google Scholar
  210. 210.
    Sissakian, A.N., Sorin, A.S., Suleymanov, M.K., et al.: Towards searching for a mixed phase of strongly interacting QCD matter at the JINR nuclotron. arXiv:nucl-ex/0601034 (2006)Google Scholar
  211. 211.
    Sissakian, A.N., Sorin, A.S., Toneev, V.D.: QCDMatter: A Search for aMixed Quark-Hadron Phase. arXiv:nucl-th/0608032 (2006)Google Scholar
  212. 212.
    Sissakian, A.N., Sorin, A.S., Suleymanov, M.K., et al.: Properties of strongly interacting matter and the search for a mixed phase at the JINR nuclotron. Phys. Part. Nucl. Lett. 5(1), 8–17 (2008)CrossRefGoogle Scholar
  213. 213.
    Sissakian, A., et al.: The MultiPurpose Detector – MPD To Study Heavy Ion Collisions at NICA. Conceptual Design Report. JINR, Dubna (2009)Google Scholar
  214. 214.
    Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., et al.: Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224–227 (1998)Google Scholar
  215. 215.
    Sorensen, P.R.: Kaon and lambda production at intermediate PT: insights into the hadronization of the bulk partonic matter created in Au+Au Collisions at RHIC. Ph.D. thesis (2003)Google Scholar
  216. 216.
    Spieles, C., Stöcker, H., Greiner, C.: Phase transition of a finite quark-gluon plasma. Phys. Rev. C 57, 908–915 (1998)ADSCrossRefGoogle Scholar
  217. 217.
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111 (1998)ADSCrossRefGoogle Scholar
  218. 218.
    Stammler, T., Gmelin, E., Greubel, K., et al.: Pressure cell and combined cryostat/furnace for high-pressure μsr studies. Hyperfine Interact. 106, 307–311 (1997). doi:10.1023/A:1012635101482ADSCrossRefGoogle Scholar
  219. 219.
    Steinberg, M.S.: Viscosity of the electron gas in metals. Phys. Rev. 109, 1486–1492 (1958)ADSzbMATHCrossRefGoogle Scholar
  220. 220.
    Steinheimer, J., Dexheimer, V., Bleicher, M., et al.: Hydrodynamics with a chiral hadronic equation of state including quark degrees of freedom. Phys. Rev. C 81, 044913 (2010)ADSCrossRefGoogle Scholar
  221. 221.
    Stocker, H., Hofmann, J., Maruhn, J., Greiner, W.: Shock waves in nuclear matter - proof by circumstantial evidence. Prog. Part. Nucl. Phys. 4, 133–195 (1980)ADSCrossRefGoogle Scholar
  222. 222.
    Stöhlker, T., Backe, H., Beyer, H., et al.: Status and perspectives of atomic physics research at GSI: the new GSI accelerator project. Nucl. Instrum. Methods Phys. Res. B 205, 156–161 (2003)ADSCrossRefGoogle Scholar
  223. 223.
    Strikhanov, M.N.: Problems of the standard model and the status of the accelerator experiment. Herald Russ. Acad. Sci. 83(3), 194 (2012)CrossRefGoogle Scholar
  224. 224.
    Sturm, C., Sharkov, B., Stöcker, H.: 1, 2, 3 FAIR ! Nucl. Phys. A 834(1–4), 682c–687c (2010)Google Scholar
  225. 225.
    Sun, B., Knöbel, R., Litvinov, Y.A., et al.: Large-scale mass measurements of short-lived nuclides with the isochronous mass spectrometry at GSI. Int. J. Mod. Phys. E 18, 346–351 (2009)ADSCrossRefGoogle Scholar
  226. 226.
    Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., et al.: Metallization of hydrogen using heavy-ion-beam implosion of multilayered cylindrical targets. Phys. Rev. E 63, 016402 (2000)ADSCrossRefGoogle Scholar
  227. 227.
    Tahir, N., Kozyreva, A., Hoffmann, D., et al.: Metallization of hydrogen using heavy ion imploded multi-layered cylindrical targets. Contrib. Plasma Phys. 41(2–3), 287–290 (2001)ADSCrossRefGoogle Scholar
  228. 228.
    Tahir, N., Deutsch, C., Fortov, V., et al.: Intense heavy ion beams as a tool to induce high-energy-density states in matter. Contrib. Plasma Phys. 43(5–6), 373–376 (2003)ADSCrossRefGoogle Scholar
  229. 229.
    Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95(3), 035001 (2005)ADSCrossRefGoogle Scholar
  230. 230.
    Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Studies of strongly coupled plasmas using intense heavy ion beams at the future FAIR facility: the HEDgeHOB collaboration. Contrib. Plasma Phys. 45(3–4), 229–235 (2005)ADSCrossRefGoogle Scholar
  231. 231.
    Tanihata, I., Hamagaki, H., Hashimoto, O., et al.: Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676–2679 (1985)ADSCrossRefGoogle Scholar
  232. 232.
    Thoma, M.H., Morfill, G.E.: Ratio of viscosity to entropy density in a strongly coupled one-component plasma. Europhys. Lett. 82(6), 65001 (2008)ADSCrossRefGoogle Scholar
  233. 233.
    Thomas, J.E.: The nearly perfect fermi gas. Phys. Today 63(5), 34–37 (2010)ADSCrossRefGoogle Scholar
  234. 234.
    Tomaselli, M., Kuhl, T., Ursescu, D., Fritzsche, S.: Correlation effects on the charge radii of exotic nuclei. Hyperfine Interact. 171, 243–253 (2006). doi:10.1007/s10751-006-9484-1ADSCrossRefGoogle Scholar
  235. 235.
    Troitskii, S.V.: Unsolved problems in particle physics. Phys. Usp. 55(1), 72–95 (2012)ADSCrossRefGoogle Scholar
  236. 236.
    Trostell, B.: Vacuum injection of hydrogen micro-sphere beams. Nucl. Instrum. Methods Phys. Res. A 362(1), 41–52 (1995)ADSCrossRefGoogle Scholar
  237. 237.
    Turlapov, A., Kinast, J., Clancy, B., et al.: Is a gas of strongly interacting atomic fermions a nearly perfect fluid? J. Low Temp. Phys. 150, 567–576 (2008). doi:10.1007/s10909-007-9589-1ADSCrossRefGoogle Scholar
  238. 238.
    Udayanandan, K.M., Sethumadhavan, P., Bannur, V.M.: Equation of state of a quark-gluon plasma using the Cornell potential. Phys. Rev. C 76, 044908 (2007)ADSCrossRefGoogle Scholar
  239. 239.
    Van der Meer, S.: Stochastic damping of betatron oscillations in the ISR. CERN-ISR-PO-72-31. Tech. Rep. (1972)Google Scholar
  240. 240.
    Vaulina, O.S., Petrov, O.F., Fortov, V.E., et al.: Pylevaya Plasma (Eksperiment i Teoriya) (Dust Plasma (Experiment and Theory). Fizmatlit, Moscow (2009)Google Scholar
  241. 241.
    Vignale, G., Ullrich, C.A., Conti, S.: Time-dependent density functional theory beyond the adiabatic local density approximation. Phys. Rev. Lett. 79, 4878–4881 (1997)Google Scholar
  242. 242.
    Vitev, I., Gyulassy, M.: High - PT tomography of d+Au and Au+Au at SPS, RHIC, and LHC. Phys. Rev. Lett. 89(25), 252301 (2002)Google Scholar
  243. 243.
    Voloshin, S.A.: Probe for the strong parity violation effects at RHIC with three particle correlations. Indian J. Phys. 85(7), 1103–1107 (2011)ADSCrossRefGoogle Scholar
  244. 244.
    Walz, J., Hansch, T.W.: A proposal to measure antimatter gravity using ultracold antihydrogen atoms. Gen. Relativ. Gravit. 36, 561–570 (2004)ADSzbMATHCrossRefGoogle Scholar
  245. 245.
    Wang, X.N., Gyulassy, M.: Gluon shadowing and jet quenching in A+A collisions at \(\sqrt{s}\) = 200A GeV. Phys. Rev. Lett. 68(10), 1480–1483 (1992)ADSCrossRefGoogle Scholar
  246. 246.
    Wang, P., Thomas, A.W., Williams, A.G.: Phase transition from hadronic matter to quark matter. Phys. Rev. C 75, 045202 (2007)ADSCrossRefGoogle Scholar
  247. 247.
    Weinberg, S.: Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J. 168, 175 (1971)ADSCrossRefGoogle Scholar
  248. 248.
    Welsch, C., Grieser, M., Ullrich, J., Wolf, A.: FLAIR Project at GSI. In: International Workshop on Beam Cooling and Related Topics, COOL05, Galena, IL (2005)Google Scholar
  249. 249.
    Weyrather, W.K., Ritter, S., Scholz, M., Kraft, G.: RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int. J. Radiat. Biol. 75(11), 1357–1364 (1999)CrossRefGoogle Scholar
  250. 250.
    Widmann, E.: Testing CPT with antiprotonic helium and antihydrogen — the ASACUSA experiment at CERN-AD. Nucl. Phys. A 752, 87–96 (2005)ADSCrossRefGoogle Scholar
  251. 251.
    Wilczek, F.: Qcd made simple. Phys. Today 53(8), 22–28 (2000)CrossRefGoogle Scholar
  252. 252.
    Xiao, G., Schiwietz, G., Grande, P.L., et al.: Indications of nuclear-track-guided electrons induced by fast heavy ions in insulators. Phys. Rev. Lett. 79, 1821–1824 (1997)ADSCrossRefGoogle Scholar
  253. 253.
    Yamazaki, T., Hayano, R., Itahashi, K., et al.: Discovery of deeply bound π states in the208Pb(d,3He) reaction. Z. Phys. A Hadrons Nucl. 355, 219–221 (1996). doi:10.1007/s002180050101CrossRefGoogle Scholar
  254. 254.
    York, R.C.: Rare isotope accelerator (ria) project. Physica C: Supercond. 441(1–2), 31–37 (2006)ADSCrossRefGoogle Scholar
  255. 255.
    Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966) [English Transl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola, NY (2002)]Google Scholar
  256. 256.
    Zwanziger, D.: Equation of state of gluon plasma from a fundamental modular region. Phys. Rev. Lett. 94, 182301 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Fortov
    • 1
  1. 1.Russian Academy of Sciences Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations