High-Power Lasers in High-Energy-Density Physics

  • Vladimir E. Fortov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 216)


In this chapter we discuss the capabilities of modern laser facilities as applied to high energy density physics. We consider the physical effects that occur when substances are exposed to high-power laser radiation: shock-wave and ultrahigh-pressure generation, cluster plasma explosions, formation of “hollow” ions and high magnetic fields. We consider in detail the mechanics of ultrafast deformations and the thermodynamics for ultrashort laser pulses.


Shock Wave Laser Radiation Laser Plasma Ultrashort Laser Pulse Nonthermal Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdallah, J., Faenov, A.Y., Skobelev, I.Y., et al.: Hot-electron influence on the x-ray emission spectra of Ar clusters heated by a high-intensity 60-fs laser pulse. Phys. Rev. A 63, 032706 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Abdallah, J., Csanak, G., Fukuda, Y., et al.: Time-dependent Boltzmann kinetic model of X-rays produced by ultrashort-pulse laser irradiation of argon clusters. Phys. Rev. A 68, 063201 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Afanas’ev, Y.V., Basov, N.G., et al.: Vzaimodeistvie moshchnogo lazernogo izlucheniya s plazmoi (Interaction of High-Power Laser Radiation with Plasma). In: Itogi nauki i tekhniki, vol. 17. VINITI, Moscow (1978)Google Scholar
  4. 4.
    Aglitskii, E.V., Safronova, U.I.: Spektroskopiya avtoionizatsionnykh sostoyanii atomnykh sistem (Spectroscopy of Autoionization States of Atomic Systems). Energoatomizdat, Moscow (1985)Google Scholar
  5. 5.
    Aglitskiy, Y., Lehecka, T., Deniz, A., et al.: X-ray emission from plasmas created by smoothed KrF laser irradiation. Phys. Plasmas 3(9), 3438–3447 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Agranat, M.B., Andreev, N.E., Ashitkov, S.I., et al.: Determination of the transport and optical properties of a nonideal solid-density plasma produced by femtosecond laser pulses. JETP Lett. 85(6), 271–276 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., et al.: Dynamics of plume and crater formation after action of femtosecond laser pulse. Appl. Surf. Sci. 253(15), 6276–6282 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., et al.: Nanospallation induced by a femtosecond laser pulse. Proc. SPIE 6720(39), 672002.1–672002.12 (2008)Google Scholar
  9. 9.
    Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., et al.: Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses. JETP Lett. 91(9), 471–477 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Albert, F., Phuoc, K.T., Shah, R., et al.: Full characterization of a laser-produced keV X-ray betatron source. Plasma Phys. Controlled Fusion 50(12), 124008 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Alexeev, I., Antonsen, T.M., Kim, K.Y., Milchberg, H.M.: Self-focusing of intense laser pulses in a clustered gas. Phys. Rev. Lett. 90, 103402 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Al’tshuler L.V., Bakanova A.A., Dudoladov I.P. et al.: Shock adiabatic curves of metals. J. Appl. Mech. Tech. Phys. 22(2), 145–169 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    an der Brügge, D., Pukhov, A.: Enhanced relativistic harmonics by electron nanobunching. Phys. Plasmas 17(3), 033110 (2010)Google Scholar
  14. 14.
    Andiel, U., Eidmann, K., Witte, K., et al.: Comparative study of time-resolved K-shell spectra from aluminum plasmas generated by ultrashort laser pulses at 395 and 790 nm. Appl. Phys. Lett. 80(2), 198–200 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Anisimov, S.I.: Transition of hydrogen into the metallic state in a compression wave induced by a laser pulse. JETP Lett. 16(10), 404 (1972)ADSGoogle Scholar
  16. 16.
    Anisimov, S., Imas, Y.A., Romanov, G.S., Khodyko, Y.V.: Deistvie izlucheniya bol’shoi moshchnosti na metally (Action of High-Power Radiation on Metals). Nauka, Moscow (1970)Google Scholar
  17. 17.
    Anisimov, S.I., Kapeliovich, B.L., Perelman, T.P.: Electron emission from metal surfaces exposed to ultrashort laser pulses. J. Exp. Theor. Phys. 39(2), 375 (1974)ADSGoogle Scholar
  18. 18.
    Anisimov, S.I., Ivanov, M.F., Inogamov, N.A., et al.: Chislennoe modelirovanie lazernogo nagrevaniya i szhatiya prostykh obolochechnykh mishenei (Numerical simulation of laser-driven heating and compression of simple shell targets). Fiz. Plazmy 3(4), 723–732 (1977)ADSGoogle Scholar
  19. 19.
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. Usp. 27(3), 181–205 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    Anisimov, S., Inogamov, N., Oparin, A., et al.: Pulsed laser evaporation: equation-of-state effects. Appl. Phys. A 69, 617–620 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Anisimov, S.I., Zhakhovskii, V.V., Inogamov, N.A., et al.: Destruction of a solid film under the action of ultrashort laser pulse. JETP Lett. 77(11), 606–610 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Anisimov, S., Zhakhovskii, V., Inogamov, N., et al.: Ablated matter expansion and crater formation under the action of ultrashort laser pulse. J. Exp. Theor. Phys. 103(2), 183–197 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Anisimov, S.I., Zhakhovskii, V.V., Inogamov, N.A., et al.: Formirovanie kratera i otkol’noi obolochki korotkim lazernym impul’som (Crater and split-off shell formation by a short laser pulse). Matem. Modelirovanie 18(8), 111–122 (2006)zbMATHGoogle Scholar
  24. 24.
    Anisimov, S., Inogamov, N., Petrov, Y., et al.: Numerical simulation of the expansion into vacuum of a crystal heated by an ultrashort laser pulse. In: Phipps, C. (ed.) Laser Ablation and Its Applications. Springer Series in Optical Sciences, vol. 129, pp. 1–16. Springer, Berlin (2007)CrossRefGoogle Scholar
  25. 25.
    Anisimov, S., Zhakhovskii, V., Inogamov, N., et al.: Simulation of the expansion of a crystal heated by an ultrashort laser pulse. Appl. Surf. Sci. 253(15), 6390–6393 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Anisimov, S.I., Inogamov, N.A., Petrov, Y.V., et al.: Interaction of short laser pulses with metals at moderate intensities. Appl. Phys. A 92, 939–943 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Anisimov, S.I., Inogamov, N.A., Petrov, Y.V., et al.: Thresholds for front-side ablation and rear-side spallation of metal foil irradiated by femtosecond laser pulse. Appl. Phys. A 92, 797–801 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Antoun, T., Seaman, L., Curran, D.R., et al.: Spall Fracture. Springer, New York (2003)Google Scholar
  29. 29.
    Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59(8), 086004 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    Arpin, P., Popmintchev, T., Wagner, N.L., et al.: Enhanced high harmonic generation from multiply ionized argon above 500 eV through laser pulse self-compression. Phys. Rev. Lett. 103, 143901 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Asay, J.R., Fowles, G.R., Gupta, Y.: Determination of material relaxation properties from measurements on decaying elastic shock fronts. J. Appl. Phys. 43(2), 744–746 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    Ashitkov, S.I., Agranat, M.B., Kanel’, G.I., et al.: Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses. JETP Lett. 92(8), 516–520 (2010)Google Scholar
  33. 33.
    Ashitkov, S.I., Agranat, M., Kanel, G.I., Fortov, V.E.: Approaching the ultimate shear and tensile strength of aluminum in experiments with femtosecond pulse laser. AIP Conf. Proc. 1426(1), 1081–1084 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Ashitkov, S.I., Inogamov, N.A., Komarov, P.S., et al.: Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating. AIP Conf. Proc. 1464(1), 120–125 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Ashitkov, S.I., Inogamov, N.A., Zhakhovskii, V.V., et al.: Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse. JETP Lett. 95(4), 176–181 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  37. 37.
    Auerbach, J.M., Bailey, D., et al.: Lawrence Livermore Lab. Report UCRL-79636 (1977)Google Scholar
  38. 38.
    Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 36(5), 337–364 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics research during nuclear explosions. Phys. Usp. 49(4), 432 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Baeva, T., Gordienko, S., Pukhov, A.: Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Bahk, S.W., Rousseau, P., Planchon, T.A., et al.: Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29(24), 2837–2839 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60(9), 092004 (1999)Google Scholar
  43. 43.
    Barker, L.M., Hollenbach, R.E.: Shock wave study of the alpha ⇄ epsilon phase transition in iron. J. Appl. Phys. 45(11), 4872–4887 (1974)ADSCrossRefGoogle Scholar
  44. 44.
    Batani, D., Vovchenko, V.I., Kanel’, G.I., et al.: Mekhanicheskie svoistva veshchestva pri bol’shikh skorostyakh deformirovaniya, vyzvannogo deistviem lazernoi udarnoi volny (Mechanical properties of a material at ultrahigh strain rates induced by a laser shock wave). Dokl. Phys. 48(3), 123 (2003)Google Scholar
  45. 45.
    Bazhirov, T.T., Norman, G.E., Stegailov, V.V.: Cavitation in liquid metals under negative pressures. Molecular dynamics modeling and simulation. J. Phys. Condens. Matter 20(11) (2008)Google Scholar
  46. 46.
    Bell, A.R., Kirk, J.G.: Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Belokon’, V., Zabrodin, A.V., et al.: Preprint No. 39, IPM AN SSSR. Moscow (1978)Google Scholar
  48. 48.
    Belov, I.A., et al.: In: Int. conf. “X Kharitonov’s thematic scientific readings”, p. 145. RPhNZ-VNIIEPh, Sarov (2008)Google Scholar
  49. 49.
    Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., Matafonov, A.P.: Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets. Phys. Usp. 51(8), 793 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    Benjamin, R.F., McCall, G.H., Ehler, A.W.: Measurement of return current in a laser-produced plasma. Phys. Rev. Lett. 42, 890–893 (1979)ADSCrossRefGoogle Scholar
  51. 51.
    Benuzzi-Mounaix, A., Koenig, M., Ravasio, A., et al.: Laser-driven shock waves for the study of extreme matter states. Plasma Phys. Controlled Fusion 48(12B), B347–B358 (2006)CrossRefGoogle Scholar
  52. 52.
    Benuzzi-Mounaix, A., Loupias, B., Koenig, M., et al.: Density measurement of low-Z shocked material from monochromatic X-ray two-dimensional images. Phys. Rev. E 77, 045402 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Berg, L., Skupin, S., Nuter, R., et al.: Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70(10), 1633 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    Berkelbach, T.C., Colgan, J., Abdallah, J., et al.: Modeling energy dependence of the inner-shell X-ray emission produced by femtosecond-pulse laser irradiation of Xenon clusters. Phys. Rev. E 79, 016407 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Berrill, M., Brizuela, F., Langdon, B., et al.: Warm photoionized plasmas created by soft-x-ray laser irradiation of solid targets. J. Opt. Soc. Am. B 25(7), B32–B38 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    Billon, D., Cognard, D., Launspach, J., et al.: Experimental study of plane and cylindrical laser driven, shock wave propagation. Opt. Commun. 15(1), 108–111 (1975)ADSCrossRefGoogle Scholar
  57. 57.
    Bloomquist, D.D., Sheffield, S.A.: Optically recording interferometer for velocity measurements with subnanosecond resolution. J. Appl. Phys. 54(4), 1717–1722 (1983)ADSCrossRefGoogle Scholar
  58. 58.
    Boiko, V.A., Vinogradov, A.V., Pikuz, S.A., et al.: Rentgenovskaya spektroskopiya lazernoi plazmy (X-Ray Spectroscopy of Laser-Produced Plasma). VINITI, Moscow (1980)Google Scholar
  59. 59.
    Boiko, V.A., Vinogradov, A.V., Pikuz, S.A., et al.: J. Sov. Laser Res. 6, 85 (1985)Google Scholar
  60. 60.
    Boiko, V.A., Pikuz, S.A., Skobelev, I.Y., Faenov, A.Y.: Rentgenovskaya spektroskopiya mnogozaryadnykh ionov (X-Ray Spectroscopy of Multiply Charged Ions). Energoatomizdat, Moscow (1988)Google Scholar
  61. 61.
    Boldarev, A.S., Gasilov, V.A., Blasco, F., et al.: Modeling cluster jets as targets for high-power ultrashort laser pulses. J. Exp. Theor. Phys. Lett. 73, 514–518 (2001)Google Scholar
  62. 62.
    Boldarev, A., Gasilov, V., Faenov, A.: On the generation of large clusters in forming gas-jet targets for lasers. Tech. Phys. 49, 388–395 (2004)Google Scholar
  63. 63.
    Boldarev, A.S., Gasilov, V.A., Faenov, A.Y., et al.: Gas-cluster targets for femtosecond laser interaction: modeling and optimization. Rev. Sci. Instrum. 77(8), 083112 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    Borghesi, M., Audebert, P., Bulanov, S.V., et al.: High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23(03), 291–295 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    Boyd, T.J.M., Ondarza-Rovira, R.: Anomalies in universal intensity scaling in ultrarelativistic laser-plasma interactions. Phys. Rev. Lett. 101, 125004 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    Briand, J.P., de Billy, L., Charles, P., et al.: Production of hollow atoms by the excitation of highly charged ions in interaction with a metallic surface. Phys. Rev. Lett. 65, 159–162 (1990)ADSCrossRefGoogle Scholar
  67. 67.
    Brunel, F.: Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987)ADSCrossRefGoogle Scholar
  68. 68.
    Buck, A., Nicolai, M., Schmid, K., et al.: Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543–548 (2011)CrossRefGoogle Scholar
  69. 69.
    Buersgens, F., Madison, K.W., Symes, D.R., et al.: Angular distribution of neutrons from deuterated cluster explosions driven by femtosecond laser pulses. Phys. Rev. E 74, 016403 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    Bula, C., McDonald, K.T., Prebys, E.J., et al.: Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76(17), 3116–3119 (1996)ADSCrossRefGoogle Scholar
  71. 71.
    Bulanov, S.V.: New epoch in the charged particle acceleration by relativistically intense laser radiation. Plasma Phys. Controlled Fusion 48(12B), B29–B37 (2006)CrossRefGoogle Scholar
  72. 72.
    Bulanov, S.V., Inovenkov, I.N., Kirsanov, V.I., et al.: Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma. Phys. Fluids B 4(7), 1935–1942 (1992)ADSCrossRefGoogle Scholar
  73. 73.
    Bulanov, S.V., Esirkepov, T., Tajima, T.: Light Intensification towards the Schwinger Limit. Phys. Rev. Lett. 91, 085001 (2003)ADSCrossRefGoogle Scholar
  74. 74.
    Bulanov, S.S., Bychenkov, V.Y., Chvykov, V., et al.: Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17(4), 043105 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    Bulanov, S.S., Esirkepov, T.Z., Thomas, A.G.R., et al.: Schwinger limit attainability with extreme power lasers. Phys. Rev. Lett. 105, 220407 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    Bulanov, S.S., Mur, V.D., Narozhny, N.B., et al.: Multiple colliding electromagnetic pulses: a way to lower the threshold of \(e^{+}e^{-}\) pair production from vacuum. Phys. Rev. Lett. 104, 220404 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Bulanov, S.V., Echkina, E.Y., Esirkepov, T.Z., et al.: Unlimited ion acceleration by radiation pressure. Phys. Rev. Lett. 104, 135003 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Bunkenberg, J., Boles, J., Brown, D., et al.: The omega high-power phosphate-glass system: design and performance. IEEE J. Quantum Electron. 17(9), 1620–1628 (1981)ADSCrossRefGoogle Scholar
  79. 79.
    Burke, D.L., Field, R.C., Horton-Smith, G., et al.: Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79(9), 1626–1629 (1997)ADSCrossRefGoogle Scholar
  80. 80.
    Burnett, N.H., Josin, G., Ahlborn, B., Evans, R.: Generation of shock waves by hot electron explosions driven by a CO2 laser. Appl. Phys. Lett. 38(4), 226–228 (1981)ADSCrossRefGoogle Scholar
  81. 81.
    Bychenkov, V., Kovalev, V.: Relativistic coulomb explosion of spherical microplasma. JETP Lett. 94, 97–100 (2011)ADSCrossRefGoogle Scholar
  82. 82.
    Checkhlov, O., Divall, E.J., Ertel, K., et al.: Development of petawatt laser amplification systems at the central laser facility. Proc. SPIE 6735(1), 67350J (2007)CrossRefGoogle Scholar
  83. 83.
    Chen, P., Tajima, T.: Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett. 83(2), 256–259 (1999)ADSCrossRefGoogle Scholar
  84. 84.
    Chen, H., Wilks, S.C., Meyerhofer, D.D., et al.: Relativistic quasimonoenergetic positron jets from intense laser-solid interactions. Phys. Rev. Lett. 105, 015003 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    Chen, L.M., Liu, F., Wang, W.M., et al.: Intense high-contrast femtosecond K-shell x-ray source from laser-driven Ar clusters. Phys. Rev. Lett. 104, 215004 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    Cherednikov, Y., Inogamov, N.A., Urbassek, H.M.: Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin LiF film. J. Opt. Soc. Am. B 28(8), 1817–1824 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    Chimier, B., Tikhonchuk, V.T.: Liquid-vapor phase transition and droplet formation by subpicosecond laser heating. Phys. Rev. B 79, 184107 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    Chiu, C., Fomytskyi, M., Grigsby, F., et al.: Laser electron accelerators for radiation medicine: a feasibility study. Med. Phys. 31(7), 2042–2052 (2004)CrossRefGoogle Scholar
  89. 89.
    Chu, H.H., Tsai, H.E., Chou, M.C., et al.: Collisional excitation soft X-ray laser pumped by optical field ionization in a cluster jet. Phys. Rev. A 71, 061804 (2005)ADSCrossRefGoogle Scholar
  90. 90.
    Clatterbuck, D.M., Krenn, C.R., Cohen, M.L., Morris, J.W.: Phonon instabilities and the ideal strength of aluminum. Phys. Rev. Lett. 91, 135501 (2003)ADSCrossRefGoogle Scholar
  91. 91.
    Colgan, J., Abdallah, J. Jr., Faenov, A., et al.: MUTA calculations of a laser-produced Mg hollow atom spectrum. Phys. Scr. 78(1), 015302 (2008)ADSCrossRefGoogle Scholar
  92. 92.
    Colgan, J. Jr., Abdallah, J., Fontes, C., et al.: Non-LTE and gradient effects in K-shell oxygen emission laser-produced plasma. High Energy Density Phys. 6(3), 295–300 (2010)ADSCrossRefGoogle Scholar
  93. 93.
    Colgan, J. Jr., Abdallah, J., Faenov, A.Y., et al.: Observation and modeling of high resolution spectral features of the inner-shell X-ray emission produced by 10−10 contrast femtosecond-pulse laser irradiation of argon clusters. High Energy Density Phys. 7(2), 77–83 (2011)ADSCrossRefGoogle Scholar
  94. 94.
    Colgan, J., Abdallah, J.J., Faenov, A.Y., et al.: Exotic dense matter states pumped by relativistic laser plasma in a radiation dominated regime. Phys. Rev. Lett. 110, 125001 (2013)ADSCrossRefGoogle Scholar
  95. 95.
    Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441(2–4), 47–189 (2007)ADSCrossRefGoogle Scholar
  96. 96.
    Cowan, T.E., Hunt, A.W., Phillips, T.W., et al.: Photonuclear fission from high energy electrons from ultraintense laser-solid interactions. Phys. Rev. Lett. 84(5), 903–906 (2000)ADSCrossRefGoogle Scholar
  97. 97.
    Crowhurst, J.C., Armstrong, M.R., Knight, K.B., et al.: Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold. Phys. Rev. Lett. 107, 144302 (2011)ADSCrossRefGoogle Scholar
  98. 98.
    Decoste, R., Kieffer, J.C., Pépin, H.: Spatial characteristics of continuum x-ray emission from lateral energy transport in CO2-laser-produced plasmas. Phys. Rev. Lett. 47, 35–38 (1981)ADSCrossRefGoogle Scholar
  99. 99.
    Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., Oleynik, I.I.: Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B 82, 064113 (2010)ADSCrossRefGoogle Scholar
  100. 100.
    Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., Oleynik, I.I.: Molecular dynamics simulations of femtosecond laser ablation and spallation of gold. AIP Conf. Proc. 1278(1), 121–130 (2010)ADSCrossRefGoogle Scholar
  101. 101.
    Demaske, B.J., Zhakhovsky, V.V., White, C.T., Oleynik, I.I.: Evolution of metastable elastic shockwaves in nickel. AIP Conf. Proc. 1426(1), 1303–1306 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    Diamant, R., Huotari, S., Hämäläinen, K., et al.: Evolution from threshold of a hollow atom’s x-ray emission spectrum: the Cu K h α 1, 2 hypersatellites. Phys. Rev. Lett. 84, 3278–3281 (2000)ADSCrossRefGoogle Scholar
  103. 103.
    Diamant, R., Huotari, S., Hämäläinen, K., et al.: Diagram x-ray emission spectra of a hollow atom: the K h α 1, 2 and K h β 1, 3 hypersatellites of Fe. Phys. Rev. Lett. 91, 193001 (2003)ADSCrossRefGoogle Scholar
  104. 104.
    Didenko, A.N., Rashchikov, V.I., Fortov, V.E.: O vozmozhnosti generatsii moshchnogo izlucheniya teragertsovogo diapazona chastot pri vozdeistvii moshchnykh lazernykh impul’sov na mishen’ (Mechanism of generation of high-intensity terahertz radiation under the action of high-power laser pulsed on a target). Tech. Phys. 56(10), 1535 (2011)CrossRefGoogle Scholar
  105. 105.
    Disdier, L., Garconnet, J.P., Malka, G., Miquel, J.L.: Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys. Rev. Lett. 82(7), 1454–1457 (1999)ADSCrossRefGoogle Scholar
  106. 106.
    Ditmire, T., Tisch, J., Springate, E., et al.: High-energy ions produced in explosions of superheated atomic clusters. Nature 386(6620), 54–56 (1997)ADSCrossRefGoogle Scholar
  107. 107.
    Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398(6727), 489–492 (1999)ADSCrossRefGoogle Scholar
  108. 108.
    Ditmire, T., Bless, S., Dyer, G., et al.: Overview of future directions in high energy-density and high-field science using ultra-intense lasers. Radiat. Phys. Chem. 70(4–5), 535–552 (2004)ADSCrossRefGoogle Scholar
  109. 109.
    Dong, P., Reed, S.A., Yi, S.A., et al.: Formation of optical bullets in laser-driven plasma bubble accelerators. Phys. Rev. Lett. 104, 134801 (2010)ADSCrossRefGoogle Scholar
  110. 110.
    Donnelly, T.D., Ditmire, T., Neuman, K., et al.: High-order harmonic generation in atom clusters. Phys. Rev. Lett. 76, 2472–2475 (1996)ADSCrossRefGoogle Scholar
  111. 111.
    Dorchies, F., Blasco, F., Caillaud, T., et al.: Spatial distribution of cluster size and density in supersonic jets as targets for intense laser pulses. Phys. Rev. A 68, 023201 (2003)ADSCrossRefGoogle Scholar
  112. 112.
    Dorchies, F., Blasco, F., Bonté, C., et al.: Observation of subpicosecond x-ray emission from laser-cluster interaction. Phys. Rev. Lett. 100, 205002 (2008)ADSCrossRefGoogle Scholar
  113. 113.
    Doumy, G., Roedig, C., Son, S.K., et al.: Nonlinear atomic response to intense ultrashort x rays. Phys. Rev. Lett. 106, 083002 (2011)ADSCrossRefGoogle Scholar
  114. 114.
    Dromey, B., Zepf, M., Gopal, A., et al.: High harmonic generation in the relativistic limit. Nat. Phys. 2(7), 456–459 (2006)CrossRefGoogle Scholar
  115. 115.
    Dromey, B., Kar, S., Bellei, C., et al.: Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99(8) (2007)Google Scholar
  116. 116.
    Dromey, B., Adams, D., Hoerlein, R., et al.: Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nat. Phys. 5(2), 146–152 (2009)CrossRefGoogle Scholar
  117. 117.
    Duvall, G.E.: Propagation of plane shock waves in a stress-relaxing medium. In: Kolsky, H., Prager, W. (eds.) Stress Waves in Anelastic Solids. Springer, Berlin (1964)Google Scholar
  118. 118.
    Eggert, J.H., Hicks, D.G., Celliers, P.M., et al.: Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6(1), 40–43 (2010)CrossRefGoogle Scholar
  119. 119.
    Eisenmann, S., Pukhov, A., Zigler, A.: Fine structure of a laser-plasma filament in air. Phys. Rev. Lett. 98, 155002 (2007)ADSCrossRefGoogle Scholar
  120. 120.
    Eisenmann, S., Peñano, J., Sprangle, P., Zigler, A.: Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments. Phys. Rev. Lett. 100, 155003 (2008)ADSCrossRefGoogle Scholar
  121. 121.
    ELI: The Extreme Light Infrastructure European Project: ELI homepageGoogle Scholar
  122. 122.
    Eliezer, S., Moshe, E., Eliezer, D.: Laser-induced tension to measure the ultimate strength of metals related to the equation of state. Laser Part. Beams 20(01), 87–92 (2002)ADSCrossRefGoogle Scholar
  123. 123.
    Eliezer, S., Mendonca, J.T., Bingham, R., Norreys, P.: A new diagnostic for very high magnetic fields in expanding plasmas. Phys. Lett. A 336(4–5), 390–395 (2005)ADSzbMATHCrossRefGoogle Scholar
  124. 124.
    Erk, B., Hoffmann, K., Kandadai, N., et al.: Observation of shells in Coulomb explosions of rare-gas clusters. Phys. Rev. A 83, 043201 (2011)ADSCrossRefGoogle Scholar
  125. 125.
    Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)ADSCrossRefGoogle Scholar
  126. 126.
    Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96(10), 105001 (2006)ADSCrossRefGoogle Scholar
  127. 127.
    Faenov, A.Y., Skobelev, I.Y., Pikuz, S.A., et al.: High-resolution x-ray spectroscopy of a subpicosecond-laser-produced silicon plasma. Phys. Rev. A 51, 3529–3533 (1995)ADSCrossRefGoogle Scholar
  128. 128.
    Faenov, A.Y., Joseph Abdallah, J., Clark, R.E.H., et al.: High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation, pp. 10–20. In: Proceedings of SPIE (1997)Google Scholar
  129. 129.
    Faenov, A.Y., Magunov, A.I., Pikuz, T.A., et al.: High-resolved x-ray spectra of hollow atoms in a femtosecond laser-produced solid plasma. Phys. Scr. 1999(T80B), 536 (1999)Google Scholar
  130. 130.
    Faenov, A.Y., Inogamov, N.A., Zhakhovskii, V.V., et al.: Low-threshold ablation of dielectrics irradiated by picosecond soft X-ray laser pulses. Appl. Phys. Lett. 94(23), 231107 (2009)Google Scholar
  131. 131.
    Faenov, A.Y., Pikuz, T.A., Skobelev, I.Y., et al.: Hollow ion spectra in warm dense laser-produced plasma: observation and modeling. J. Plasma Fusion Res. Ser. 8, 1210–1213 (2009)Google Scholar
  132. 132.
    Faenov, A.Y., Fukuda, Y., Pikuz, T.A., et al.: Investigation of interaction of short laser pulses with large clusters and applications to imaging processes. J. Korean Phys. Soc. 56(1), 279–286 (2010)Google Scholar
  133. 133.
    Faenov, A., Skobelev, I., Pikuz, T., et al.: Diagnostics of the early stage of the heating of clusters by a femtosecond laser pulse from the spectra of hollow ions. JETP Lett. 94, 171–176 (2011)ADSCrossRefGoogle Scholar
  134. 134.
    Fedotov, A.M., Narozhny, N.B., Mourou, G., Korn, G.: Limitations on the attainable intensity of high power lasers. Phys. Rev. Lett. 105, 080402 (2010)ADSCrossRefGoogle Scholar
  135. 135.
    Fennel, T., Meiwes-Broer, K.H., Tiggesbäumker, J., et al.: Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82, 1793–1842 (2010)ADSCrossRefGoogle Scholar
  136. 136.
    Fortov, V.E.: Dynamic methods in plasma physics. Phys. Usp. 25(11), 781–809 (1982)ADSCrossRefGoogle Scholar
  137. 137.
    Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)Google Scholar
  138. 138.
    Fortov, V.E.: Ekstremal’nye sostoyaniya veshchestva (Extreme States of Matter). Fizmatlit, Moscow (2009). [Translated into English: Extreme States of Matter. Series: The Frontiers Collection. Springer, Berlin, Heidelberg (2011)]Google Scholar
  139. 139.
    Fortov, V.E.: Extreme states of matter on earth and in space. Phys. Usp. 52(6), 615–647 (2009)Google Scholar
  140. 140.
    Fortov, V.E.: Extreme States of Matter. Springer, Berlin (2010)Google Scholar
  141. 141.
    Fortov, V.E., Morfill, G.E.: Complex and Dusty Plasmas: From Laboratory to Space. CRC Press, Boca Raton (2010)Google Scholar
  142. 142.
    Fortov, V.E., Batani, D., Kilpio, A.V., et al.: The spall strength limit of matter at ultrahigh strain rates induced by laser shock waves. Laser Part. Beams 20(02), 317–320 (2002)ADSCrossRefGoogle Scholar
  143. 143.
    Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  144. 144.
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008)ADSCrossRefGoogle Scholar
  145. 145.
    Fuchs, M., Weingartner, R., Popp, A., Major, Z., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Horlein, R., Tsakiris, G.D., Schramm, U., Rowlands-Rees, T.P., Hooker, S.M., Habs, D., Krausz, F., Karsch, S., Grüner, F.: Laser-driven soft-X-ray undulator source. Nat. Phys. 5(09), 826–829 (2009)CrossRefGoogle Scholar
  146. 146.
    Fujimoto, M., Matsukado, K., Takahashi, H., et al.: Diagnosis of laser-induced relativistic plasma by positron imaging technique. Appl. Phys. Lett. 93(25), 251101 (2008)ADSCrossRefGoogle Scholar
  147. 147.
    Fujimoto, M., Matsukado, K., Takahashi, H., et al.: Repetitive production of positron emitters using deuterons accelerated by multiterawatt laser pulses. Rev. Sci. Instrum. 80(11), 113301 (2009)ADSCrossRefGoogle Scholar
  148. 148.
    Fujiwara, M., Kawase, K., Titov, A.T.: Parity non-conservation measurements with photons at SPring-8. AIP Conf. Proc. 802(1), 246–249 (2005)ADSCrossRefGoogle Scholar
  149. 149.
    Fukuda, Y., Faenov, A.Y., Pikuz, T., et al.: Soft X-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters. Appl. Phys. Lett. 92(12), 121110 (2008)ADSCrossRefGoogle Scholar
  150. 150.
    Fukuda, Y., Faenov, A.Y., Tampo, M., et al.: Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103, 165002 (2009)ADSCrossRefGoogle Scholar
  151. 151.
    Galy, J., Maucec, M., Hamilton, D.J., et al.: Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys. 9(2), 23 (2007)ADSCrossRefGoogle Scholar
  152. 152.
    Gao, X., Wang, X., Shim, B., et al.: Characterization of cluster/monomer ratio in pulsed supersonic gas jets. Appl. Phys. Lett. 100(6), 064101 (2012)ADSCrossRefGoogle Scholar
  153. 153.
    Garnov, S.V., Shcherbakov, I.A.: Laser methods for generating megavolt terahertz pulses. Phys. Usp. 54(1), 91–96 (2011)ADSCrossRefGoogle Scholar
  154. 154.
    Gasparyan, P.D., Starikov, F.A., Starostin, A.N.: Angular divergence and spatial coherence of X-ray laser radiation. Phys. Usp. 41(8), 761–792 (1998)ADSCrossRefGoogle Scholar
  155. 155.
    Gauthier, J.C., Geindre, J.P., Audebert, P., et al.: Observation of KL → LL x-ray satellites of aluminum in femtosecond laser-produced plasmas. Phys. Rev. E 52, 2963–2968 (1995)ADSCrossRefGoogle Scholar
  156. 156.
    Giddings, S.B., Thomas, S.: High energy colliders as black hole factories: the end of short distance physics. Phys. Rev. D 65(5), 056010 (2002)ADSCrossRefGoogle Scholar
  157. 157.
    Ginzburg, V.L.: Applications of Electrodynamics in Theoretical Physics and Astrophysics. Gordon and Breach, New York (1989)Google Scholar
  158. 158.
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)CrossRefGoogle Scholar
  159. 159.
    Giulietti, A., Bourgeois, N., Ceccotti, T., et al.: Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. Phys. Rev. Lett. 101, 105002 (2008)ADSCrossRefGoogle Scholar
  160. 160.
    Giovanielli, D.V.: Wavelength effects in laser fusion. Bull. Am. Phys. Soc. 21, 1047 (1976)Google Scholar
  161. 161.
    Goldstone, P.D., Benjamin, R.F., Schultz, R.B.: Shock-wave production and plasma motion in CO2-laser-irradiated targets. Appl. Phys. Lett. 38(4), 223–225 (1981)ADSCrossRefGoogle Scholar
  162. 162.
    Gonoskov, A.A., Korzhimanov, A.V., Kim, A.V., et al.: Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses. Phys. Rev. E 84, 046403 (2011)ADSCrossRefGoogle Scholar
  163. 163.
    Gordienko, S., Pukhov, A., Shorokhov, O., Baeva, T.: Coherent focusing of high harmonics: a new way towards the extreme intensities. Phys. Rev. Lett. 94, 103903 (2005)ADSCrossRefGoogle Scholar
  164. 164.
    Graboske, H., Wong, L.: Lawrence Livermore Lab. Report UCRL-52323 (1977)Google Scholar
  165. 165.
    Grillon, G., Balcou, P., Chambaret, J.P., et al.: Deuterium-deuterium fusion dynamics in low-density molecular-cluster jets irradiated by intense ultrafast laser pulses. Phys. Rev. Lett. 89, 065005 (2002)ADSCrossRefGoogle Scholar
  166. 166.
    Grun, J., Decoste, R., Ripin, B.H.: Naval Res. Lab. Memorandum Report 4410 (1981)Google Scholar
  167. 167.
    Hafz, N.A.M., Jeong, T.M., Choi, I.W., et al.: Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nat. Photonics 2, 571–577 (2008)CrossRefGoogle Scholar
  168. 168.
    Hagena, O.F.: Cluster ion sources (invited). Rev. Sci. Instrum. 63(4), 2374–2379 (1992)ADSCrossRefGoogle Scholar
  169. 169.
    Harrach, R.J., Lee, Y.T., et al.: In: Nellis, W.J., Seaman, L., Graham, R.A. (eds.) Shock Waves in Condensed Matter-1981, p. 164. American Institute of Physics, New York (1982)Google Scholar
  170. 170.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
  171. 171.
    Hayakawa, T., Ohgaki, H., Shizuma, T., et al.: Nondestructive detection of hidden chemical compounds with laser compton-scattering gamma rays. Rev. Sci. Instrum. 80(4), 045110 (2009)ADSCrossRefGoogle Scholar
  172. 172.
    Hayashi, Y., Fukuda, Y., Faenov, A.Y., et al.: Intense and reproducible Kα emissions from micron-sized Kr cluster target irradiated with intense femtosecond laser pulses. Jpn. J. Appl. Phys. 49(12), 126401 (2010)ADSCrossRefGoogle Scholar
  173. 173.
    Hayashi, Y., Pirozhkov, A.S., Kando, M., et al.: Efficient generation of Xe K-shell X-rays by high-contrast interaction with submicrometer clusters. Opt. Lett. 36(9), 1614–1616 (2011)ADSCrossRefGoogle Scholar
  174. 174.
    Heinzl, T., Seipt, D., Kämpfer, B.: Beam-shape effects in nonlinear Compton and Thomson scattering. Phys. Rev. A 81, 022125 (2010)ADSCrossRefGoogle Scholar
  175. 175.
    Henig, A., Steinke, S., Schnürer, M., et al.: Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009)ADSCrossRefGoogle Scholar
  176. 176.
  177. 177.
    Higginbotham, A.P., Semonin, O., Bruce, S., et al.: Generation of Mie size microdroplet aerosols with applications in laser-driven fusion experiments. Rev. Sci. Instrum. 80(6), 063503 (2009)ADSCrossRefGoogle Scholar
  178. 178.
    Higginson, D.P., McNaney, J.M., Swift, D.C., et al.: Laser generated neutron source for neutron resonance spectroscopy. Phys. Plasmas 17(10), 100701 (2010)ADSCrossRefGoogle Scholar
  179. 179.
    HiPER: High Power Laser Energy Research Project: HiPER homepageGoogle Scholar
  180. 180.
    Hoffmann, K., Murphy, B., Kandadai, N., et al.: Rare-gas-cluster explosions under irradiation by intense short XUV pulses. Phys. Rev. A 83, 043203 (2011)ADSCrossRefGoogle Scholar
  181. 181.
    Hudson, L., Seely, J.: Laser-produced X-ray sources. Radiat. Phys. Chem. 79(2), 132–138 (2010)ADSCrossRefGoogle Scholar
  182. 182.
    Huntington, C.M., Thomas, A.G.R., McGuffey, C., et al.: Current filamentation instability in laser wakefield accelerators. Phys. Rev. Lett. 106, 105001 (2011)ADSCrossRefGoogle Scholar
  183. 183.
    Holmes, N.C., Trainor, R.J., Anderson, R.: In: Nellis, W.J., Seaman, L., Graham, R.A. (eds.) Shock Waves in Condensed Matter-1981, p. 160. American Institute of Physics, New York (1982)Google Scholar
  184. 184.
    Inogamov, N.A., Anisimov, S.I., Retfeld, B.: Rarefaction wave and gravitational equilibrium in a two-phase liquid-vapor medium. J. Exp. Theor. Phys. 88(6), 1143 (1999)ADSCrossRefGoogle Scholar
  185. 185.
    Inogamov, N.A., Petrov, Y.V., Anisimov, S.I., et al.: Expansion of matter heated by an ultrashort laser pulse. JETP Lett. 69(4), 310–316 (1999)ADSCrossRefGoogle Scholar
  186. 186.
    Inogamov, N.A., Anisimov, S.I., Petrov, Y.V., et al.: Theoretical and experimental study of hydrodynamics of metal target irradiated by ultrashort laser pulse. In: Proc. SPIE 7005, High-Power Laser Ablation VII, pp. 70052F–70052F–10 (2008)Google Scholar
  187. 187.
    Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., et al.: Nanospallation induced by an ultrashort laser pulse. J. Exp. Theor. Phys. 107(1), 1 (2008)ADSCrossRefGoogle Scholar
  188. 188.
    Inogamov, N.A., Faenov, A.Y., Khokhlov, V.A., et al.: Spallative ablation of metals and dielectrics. Contrib. Plasma Phys. 49(7–8), 455–466 (2009)ADSCrossRefGoogle Scholar
  189. 189.
    Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., et al.: Two-temperature relaxation and melting after absorption of femtosecond laser pulse. Appl. Surf. Sci. 255(24), 9712–9716 (2009)ADSCrossRefGoogle Scholar
  190. 190.
    Inogamov, N., Ashitkov, S., Zhakhovsky, V., et al.: Acoustic probing of two-temperature relaxation initiated by action of ultrashort laser pulse. Appl. Phys. A 101, 1–5 (2010)ADSCrossRefGoogle Scholar
  191. 191.
    Inogamov, N.A., Zhakhovsky, V.V., Ashitkov, S.I., et al.: Pump-probe method for measurement of thickness of molten layer produced by ultrashort laser pulse. AIP Conf. Proc. 1278(1), 590–599 (2010)ADSCrossRefGoogle Scholar
  192. 192.
    Inogamov, N.A., Zhakhovsky, V.V., Faenov, A.Y., et al.: Spallative ablation of dielectrics by X-ray laser. Appl. Phys. A 101, 87–96 (2010)ADSCrossRefGoogle Scholar
  193. 193.
    Inogamov, N.A., Anisimov, S.I., Zhakhovskii, V.V., et al.: Ablation of insulators under the action of short pulses of X-ray plasma lasers and free-electron lasers. J. Opt. Technol. 78(8), 473 (2011)CrossRefGoogle Scholar
  194. 194.
    Inogamov, N.A., Anisimov, S.I., Zhakhovsky, V.V., et al.: Ablation by short optical and X-ray laser pulses. Proc. SPIE Int. Soc. Opt. Eng. 7996 (2011)Google Scholar
  195. 195.
    Inogamov, N.A., Faenov, A.Y., Zhakhovskii, V.V., et al.: Interaction of short laser pulses in wavelength range from infrared to x-ray with metals, semiconductors, and dielectrics. Contrib. Plasma Phys. 51(4), 361–366 (2011)ADSCrossRefGoogle Scholar
  196. 196.
    Inogamov, N.A., Faenov, A.Y., Zhakhovsky, V.V., et al.: Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse. Contrib. Plasma Phys. 51(5), 419–426 (2011)ADSCrossRefGoogle Scholar
  197. 197.
    Inogamov, N.A., Zhakhovskii, V.V., Khokhlov, V.A., Shepelev, V.V.: Superelasticity and the propagation of shock waves in crystals. JETP Lett. 93(4), 226–232 (2011)ADSCrossRefGoogle Scholar
  198. 198.
    Inogamov, N.A., Zhakhovsky, V.V., Ashitkov, S.I., et al.: Laser acoustic probing of two-temperature zone created by femtosecond pulse. Contrib. Plasma Phys. 51(4), 367–374 (2011)ADSCrossRefGoogle Scholar
  199. 199.
    Inogamov, N., Khokhlov, V., Petrov, Y., et al.: Ultrashort elastic and plastic shockwaves in aluminum. AIP Conf. Proc. 1426(1), 909–912 (2012)ADSCrossRefGoogle Scholar
  200. 200.
    Inogamov, N.A., Petrov, Y.V., Zhakhovsky, V.V., et al.: Two-temperature thermodynamic and kinetic properties of transition metals irradiated by femtosecond lasers. AIP Conf. Proc. 1464(1), 593–608 (2012)ADSCrossRefGoogle Scholar
  201. 201.
    Insepov, Z., Hassanein, A., Bazhirov, T.T., et al.: Molecular dynamics simulations of bubble formation and cavitation in liquid metals. Fusion Sci. Technol. 52(4), 885–889 (2007)Google Scholar
  202. 202.
    Ishino, M., Faenov, A.Y., Tanaka, M., et al.: Nanoscale surface modifications and formation of conical structures at aluminum surface induced by single shot exposure of soft X-ray laser pulse. J. Appl. Phys. 109(1), 013504 (2011)ADSCrossRefGoogle Scholar
  203. 203.
    Issac, R.C., Vieux, G., Ersfeld, B., et al.: Ultra hard x rays from krypton clusters heated by intense laser fields. Phys. Plasmas 11(7), 3491–3496 (2004)ADSCrossRefGoogle Scholar
  204. 204.
    Lang, J.M. Jr., Gupta, Y.M.: Strength and elastic deformation of natural and synthetic diamond crystals shock compressed along [100]. J. Appl. Phys. 107(11), 113538 (2010)ADSCrossRefGoogle Scholar
  205. 205.
    Jahnátek, M., Hafner, J., Krajčí, M.: Shear deformation, ideal strength, and stacking fault formation of FCC metals: a density-functional study of Al and Cu. Phys. Rev. B 79, 224103 (2009)ADSCrossRefGoogle Scholar
  206. 206.
    Jung, I.D., Kartner, F.X., Matuschek, N., et al.: Self-starting 6.5-fs pulses from a Ti:sapphire laser. Opt. Lett. 22(13), 1009–1011 (1997)Google Scholar
  207. 207.
    Kando, M., Nakajima, K., Arinaga, M., et al.: Interaction of terawatt laser with plasma. J. Nucl. Mater. 248(1), 405–407 (1997)ADSCrossRefGoogle Scholar
  208. 208.
    Kando, M., Pirozhkov, A.S., Kawase, K., et al.: Enhancement of photon number reflected by the relativistic flying mirror. Phys. Rev. Lett. 103, 235003 (2009)ADSCrossRefGoogle Scholar
  209. 209.
    Kanel, G.I., Rasorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. Springer, New York (2004)CrossRefGoogle Scholar
  210. 210.
    Kanel, G.I., Razorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. High Pressure Shock Compression of Condensed Matter. Springer (2004)CrossRefGoogle Scholar
  211. 211.
    Kanel, G.I., Fortov, V.E., Razorenov, S.V.: Shock waves in condensed-state physics. Phys. Usp. 50(8), 771–791 (2007)ADSCrossRefGoogle Scholar
  212. 212.
    Kanel, G.: Spall fracture: methodological aspects, mechanisms and governing factors. Int. J. Fract. 163, 173–191 (2010)zbMATHCrossRefGoogle Scholar
  213. 213.
    Karagodsky, V., Schieber, D., Schächter, L.: Enhancing X-ray generation by electron-beam˘laser interaction in an optical Bragg structure. Phys. Rev. Lett. 104, 024801 (2010)ADSCrossRefGoogle Scholar
  214. 214.
    Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametric amplifiers: their state and prospects. Phys. Usp. 51(9), 969 (2008)ADSCrossRefGoogle Scholar
  215. 215.
    Kishimoto, Y., Masaki, T., Tajima, T.: High energy ions and nuclear fusion in laser–cluster interaction. Phys. Plasmas 9(2), 589–601 (2002)ADSCrossRefGoogle Scholar
  216. 216.
    Kneip, S., McGuffey, C., Martins, J.L., et al.: Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6(10), 980–983 (2010)CrossRefGoogle Scholar
  217. 217.
    Kodama, R., Tanaka, K.A., Sentoku, Y., et al.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 84(4), 674–677 (2000)ADSCrossRefGoogle Scholar
  218. 218.
    Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., et al.: Numerical modeling of shock-wave instability in thermodynamically nonideal media. J. Exp. Theor. Phys. 98(4), 811–819 (2004)ADSCrossRefGoogle Scholar
  219. 219.
    Korzhimanov, A.V., Gonoskov, A.A., Khazanov, E.A., Sergeev, A.M.: Horizons of petawatt laser technology. Phys. Usp. 54(1), 9–28 (2011)ADSCrossRefGoogle Scholar
  220. 220.
    Kotaki, H., Daito, I., Kando, M., et al.: Electron optical injection with head-on and countercrossing colliding laser pulses. Phys. Rev. Lett. 103, 194803 (2009)ADSCrossRefGoogle Scholar
  221. 221.
    Krainov, V.P., Smirnov, M.B.: The evolution of large clusters under the action of ultrashort superintense laser pulses. Phys. Usp. 43(9), 901–920 (2000)ADSCrossRefGoogle Scholar
  222. 222.
    Krainov, V.P., Smirnov, B.M., Smirnov, M.B.: Femtosecond excitation of cluster beams. Phys. Usp. 50(9), 907–931 (2007)ADSCrossRefGoogle Scholar
  223. 223.
    Kritcher, A.L., Neumayer, P., Castor, J., et al.: Ultrafast X-ray Thomson scattering of shock-compressed matter. Science 322(5898), 69–71 (2008)ADSCrossRefGoogle Scholar
  224. 224.
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading (1988)Google Scholar
  225. 225.
    Kugland, N.L., Constantin, C.G., Neumayer, P., et al.: High Kα X-ray conversion efficiency from extended source gas jet targets irradiated by ultra short laser pulses. Appl. Phys. Lett. 92(24), 241504 (2008)ADSCrossRefGoogle Scholar
  226. 226.
    Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Suk, H.: Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm. Phys. Rev. Lett. 99, 124801 (2007)ADSCrossRefGoogle Scholar
  227. 227.
    Kuramitsu, Y., Sakawa, Y., Morita, T., et al.: Time evolution of collisionless shock in counterstreaming laser-produced plasmas. Phys. Rev. Lett. 106, 175002 (2011)ADSCrossRefGoogle Scholar
  228. 228.
    Kuramitsu, Y., Sakawa, Y., Dono, S., et al.: Kelvin-Helmholtz turbulence associated with collisionless shocks in laser produced plasmas. Phys. Rev. Lett. 108, 195004 (2012)ADSCrossRefGoogle Scholar
  229. 229.
    Landau, L.D., Lifshits, E.M.: Fluid Mechanics, 2nd edn. Pergamon Press, Oxford (1987)zbMATHGoogle Scholar
  230. 230.
    Last, I., Ron, S., Jortner, J.: Aneutronic H + 11B nuclear fusion driven by Coulomb explosion of hydrogen nanodroplets. Phys. Rev. A 83, 043202 (2011)ADSCrossRefGoogle Scholar
  231. 231.
    Lawrence Livermore Lab. Laser Program Annual Report LCRL-ECC21-75, p. 64 (1976)Google Scholar
  232. 232.
    Lawrence Livermore Lab. Laser Program Annual Report UCRL-5C021-78, p. 21 (1979)Google Scholar
  233. 233.
    Ledingham, K.W.D., Spencer, I., McCanny, T., et al.: Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 84(5), 899–902 (2000)ADSCrossRefGoogle Scholar
  234. 234.
    Ledingham, K.W.D., McKenna, P., Singhal, R.P.: Applications for nuclear phenomena generated by ultra-intense lasers. Science 300(5622), 1107–1111 (2003)ADSCrossRefGoogle Scholar
  235. 235.
    Lee, K., Lee, J.Y., Park, S.H., et al.: Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse. Phys. Plasmas 18(1), 013101 (2011)ADSCrossRefGoogle Scholar
  236. 236.
    Leemans, W.P., Nagler, B., Gonsalves, A.J., et al.: Gev electron beams from a centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006)CrossRefGoogle Scholar
  237. 237.
    Li, C.K., Séguin, F.H., Frenje, J.A., et al.: Observation of the decay dynamics and instabilities of megagauss field structures in laser-produced plasmas. Phys. Rev. Lett. 99, 015001 (2007)ADSCrossRefGoogle Scholar
  238. 238.
    Li, H., Liu, J., Ni, G., et al.: Parameter optimization for fusion neutron yield from deuterium cluster explosion driven by intense femtosecond laser pulses. Phys. Rev. A 79, 043204 (2009)ADSCrossRefGoogle Scholar
  239. 239.
    Li, Y., Lan, K., Lai, D., et al.: Radiation-temperature shock scaling of 1 ns laser-driven hohlraums. Phys. Plasmas 17(4), 042704 (2010)ADSCrossRefGoogle Scholar
  240. 240.
    Liang, E.P., Wilks, S.C., Tabak, M.: Pair production by ultraintense lasers. Phys. Rev. Lett. 81(22), 4887–4890 (1998)ADSCrossRefGoogle Scholar
  241. 241.
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  242. 242.
    Litz, M.S., Merkel, G., Pereira, N.R., et al.: Anomalous fluorescence line intensity in megavoltage bremsstrahlung. Phys. Plasmas 17(4), 043302 (2010)ADSCrossRefGoogle Scholar
  243. 243.
    Liu, Y., Durand, M., Chen, S., et al.: Energy exchange between femtosecond laser filaments in air. Phys. Rev. Lett. 105, 055003 (2010)ADSCrossRefGoogle Scholar
  244. 244.
    Loupias, B., Koenig, M., Falize, E., et al.: Supersonic-jet experiments using a high-energy laser. Phys. Rev. Lett. 99, 265001 (2007)ADSCrossRefGoogle Scholar
  245. 245.
    Lu, H.Y., Liu, J.S., Wang, C., et al.: Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields. Phys. Rev. A 80, 051201 (2009)ADSCrossRefGoogle Scholar
  246. 246.
    Magill, J., Schwoerer, H., Ewald, F., et al.: Laser transmutation of iodine-129. Appl. Phys. B 77(4), 387–390 (2003)ADSCrossRefGoogle Scholar
  247. 247.
    Maine, P., Mourou, G.: Amplification of 1-nsec pulses in Nd:glass followed by compression to 1 psec. Opt. Lett. 13(3), 467–469 (1988)ADSCrossRefGoogle Scholar
  248. 248.
    Maine, P., Strickland, D., Bado, P., et al.: Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24(2), 398–403 (1988)ADSCrossRefGoogle Scholar
  249. 249.
    Malka, V., Fritzler, S., Lefebvre, E., et al.: Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002)ADSCrossRefGoogle Scholar
  250. 250.
    Malka, V., Faure, J., Gauduel, Y.A., et al.: Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4(06), 447–453 (2008)CrossRefGoogle Scholar
  251. 251.
    Malone, R.C., McCrory, R.L., Morse, R.L.: Indications of strongly flux-limited electron thermal conduction in laser-target experiments. Phys. Rev. Lett. 34, 721–724 (1975)ADSCrossRefGoogle Scholar
  252. 252.
    Mancic, A., Robiche, J., Antici, P., et al.: Isochoric heating of solids by laser-accelerated protons: experimental characterization and self-consistent hydrodynamic modeling. High Energy Density Phys. 6(1), 21–28 (2010)ADSCrossRefGoogle Scholar
  253. 253.
    Manenkov, A.A.: Self-focusing of laser pulses: current state and future prospects. Phys. Usp. 54(1), 100–104 (2011)ADSCrossRefGoogle Scholar
  254. 254.
    March, S.P. (ed.): Los Alamos Sci. Lab. Shock Wave Data. University of California Press, Berkeley (1980)Google Scholar
  255. 255.
    Martins, S.F., Fonseca, R.A., Lu, W., et al.: Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nat. Phys. 6(04), 311–316 (2010)CrossRefGoogle Scholar
  256. 256.
    Mason, R.J.: Apparent and real thermal inhibition in laser-produced plasmas. Phys. Rev. Lett. 47, 652–656 (1981)ADSCrossRefGoogle Scholar
  257. 257.
    McGuffey, C., Thomas, A.G.R., Schumaker, W., et al.: Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010)ADSCrossRefGoogle Scholar
  258. 258.
    McKenna, P., Ledingham, K.W., Shimizu, S., et al.: Broad energy spectrum of laser-accelerated protons for spallation-related physics. Phys. Rev. Lett. 94(8), 084801 (2005)ADSCrossRefGoogle Scholar
  259. 259.
    McMahon, S.J., Kavanagh, A.P., Watanabe, H., et al.: Characterization and parametrization in terms of atomic number of X-ray emission from K-shell filling during ion-surface interactions. Phys. Rev. A 83, 022901 (2011)ADSCrossRefGoogle Scholar
  260. 260.
    Mcpherson, A., Thompson, B.D., Borisov, A.B., et al.: Multiphoton-induced X-ray-emission at 4–5 keV from Xe atoms with multiple core vacancies. Nature 370(6491), 631–634 (1994)ADSCrossRefGoogle Scholar
  261. 261.
    McWilliams, R.S., Eggert, J.H., Hicks, D.G., et al.: Strength effects in diamond under shock compression from 0.1 to 1 tpa. Phys. Rev. B 81, 014111 (2010)Google Scholar
  262. 262.
    Mead, W.C., Haas, R.A., Kruer, W.L., et al.: Observation and simulation of effects on parylene disks irradiated at high intensities with a 1.06-μm laser. Phys. Rev. Lett. 37, 489–492 (1976)Google Scholar
  263. 263.
    Meyer-ter Vehn, J.: From laser fusion to laser accelerators: basic studies into high power laser plasmas. Plasma Phys. Controlled Fusion 51(12), 124001 (2009)ADSCrossRefGoogle Scholar
  264. 264.
    Milchberg, H.M., Kim, K.Y., Kumarappan, V., et al.: Clustered gases as a medium for efficient plasma waveguide generation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1840), 647–661 (2006)ADSCrossRefGoogle Scholar
  265. 265.
    Mima, K., Ohsuga, T., Takabe, H., et al.: Wakeless triple-soliton accelerator. Phys. Rev. Lett. 57(12), 1421–1424 (1986)ADSCrossRefGoogle Scholar
  266. 266.
    Mishin, Y., Farkas, D., Mehl, M.J., Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999)ADSCrossRefGoogle Scholar
  267. 267.
    Mitchell, A.C., Nellis, W.J.: Shock compression of aluminum, copper, and tantalum. J. Appl. Phys. 52(5), 3363–3374 (1981)ADSCrossRefGoogle Scholar
  268. 268.
    Moore, D.S., Gahagan, K.T., Reho, J.H., et al.: Ultrafast nonlinear optical method for generation of planar shocks. Appl. Phys Lett. 78(1), 40–42 (2001)ADSCrossRefGoogle Scholar
  269. 269.
    Moribayashi, K., Sasaki, A., Tajima, T.: Ultrafast X-ray processes with hollow atoms. Phys. Rev. A 58, 2007–2015 (1998)ADSCrossRefGoogle Scholar
  270. 270.
    Moshe, E., Dekel, E., Henis, Z., Eliezer, S.: Development of an optically recording velocity interferometer system for laser induced shock waves measurements. Appl. Phys. Lett. 69(10), 1379–1381 (1996)ADSCrossRefGoogle Scholar
  271. 271.
    Mourou, G., Tajima, T.: More intense, shorter pulses. Science 331(6013), 41–42 (2011)ADSCrossRefGoogle Scholar
  272. 272.
    Mourou, G.A., Barry, C.P.J., Perry, M.D.: Ultrahigh-intensity lasers: physics of the extreme on a tabletop. Phys. Today 51(1), 22–28 (1998)ADSCrossRefGoogle Scholar
  273. 273.
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006)CrossRefGoogle Scholar
  274. 274.
    Nagler, B., Zastrau, U., Faustlin, R.R., et al.: Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys. 5(9), 693–696 (2009)CrossRefGoogle Scholar
  275. 275.
    Najmudin, Z., Walton, B.R., Mangles, S.P.D., et al.: Measurements of magnetic fields generated in underdense plasmas by intense lasers. AIP Conf. Proc. 827(1), 53–64 (2006)ADSCrossRefGoogle Scholar
  276. 276.
    Nakamura, T., Fukuda, Y., Yogo, A., et al.: Coulomb implosion mechanism of negative ion acceleration in laser plasmas. Phys. Lett. A 373(30), 2584–2587 (2009)ADSzbMATHCrossRefGoogle Scholar
  277. 277.
    Nakamura, T., Fukuda, Y., Yogo, A., et al.: High energy negative ion generation by Coulomb implosion mechanism. Phys. Plasmas 16(11), 113106 (2009)ADSCrossRefGoogle Scholar
  278. 278.
    Nakamura, T., Bulanov, S.V., Esirkepov, T.Z., Kando, M.: High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 105, 135002 (2010)ADSCrossRefGoogle Scholar
  279. 279.
    Nakamura, T., Koga, J.K., Esirkepov, T.Z., et al.: High-power γ-ray flash generation in ultraintense laser-plasma interactions. Phys. Rev. Lett. 108, 195001 (2012)ADSCrossRefGoogle Scholar
  280. 280.
    Nakatsutsumi, M., Marques, J.R., Antici, P., et al.: High-power laser delocalization in plasmas leading to long-range beam merging. Nat. Phys. 6(10), 1010–1016 (2010)CrossRefGoogle Scholar
  281. 281.
    Narozhny, N.B., Bulanov, S.S., Mur, V.D., Popov, V.S.: e+e – pair production by a focused laser pulse in vacuum. Phys. Lett. A 330(1–2), 1–6 (2004)Google Scholar
  282. 282.
    Naseri, N., Bychenkov, V.Y., Rozmus, W.: Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas 17(8), 083109 (2010)ADSCrossRefGoogle Scholar
  283. 283.
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)Google Scholar
  284. 284.
    Nellis, W.J.: Shock compression of hydrogen and other small molecules. In: Chiarotti, G.L., Hemley, R.J., Bernasconi, M., Ulivi, L. (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 607. IOS Press, Amsterdam (2002)Google Scholar
  285. 285.
    Nilson, P.M., Mangles, S.P.D., Willingale, L., et al.: Generation of ultrahigh-velocity ionizing shocks with petawatt-class laser pulses. Phys. Rev. Lett. 103, 255001 (2009)ADSCrossRefGoogle Scholar
  286. 286.
    Nomura, Y., Hörlein, R., Tzallas, P., et al.: Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nat. Phys. 5(02), 124–128 (2009)CrossRefGoogle Scholar
  287. 287.
    Norman, G.E., Stegailov, V.V.: Homogeneous nucleation in a superheated crystal. Molecular-dynamic simulation. Dokl. Phys. 47(9), 667 (2002)Google Scholar
  288. 288.
    Norman, G.E., Skobelev, I.Y., Stegailov, V.V.: Excited states of warm dense matter. Contrib. Plasma Phys. 51(5), 411–418 (2011)ADSCrossRefGoogle Scholar
  289. 289.
    Norman, G.E., Starikov, S.V., Stegailov, V.V.: Atomistic simulation of laser ablation of gold: effect of pressure relaxation. J. Exp. Theor. Phys. 114(5), 792 (2012)ADSCrossRefGoogle Scholar
  290. 290.
    Norreys, P.A.: Laser-driven particle acceleration. Nat. Photonics 3(8), 423–425 (2009)ADSCrossRefGoogle Scholar
  291. 291.
    Ogura, K., Shizuma, T., Hayakawa, T., et al.: Proton-induced nuclear reactions using compact high-contrast high-intensity laser. Appl. Phys. Express 2(6), 066001 (2009)ADSCrossRefGoogle Scholar
  292. 292.
    Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [English Transl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]Google Scholar
  293. 293.
    Pak, A., Marsh, K.A., Martins, S.F., et al.: Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010)ADSCrossRefGoogle Scholar
  294. 294.
    Parker, L.: Quantized fields and particle creation in expanding universes. I. Phys. Rev. 183(5), 1057–1068 (1969)ADSzbMATHCrossRefGoogle Scholar
  295. 295.
    Petrov, Y.V., Zhakhovskii, V.V., Inogamov, N.A., et al.: Equation of state of matter irradiated by short laser pulse and geometry of spalled cupola. In: Proc. SPIE 7005, High-Power Laser Ablation VII, pp. 70051W–70051W–12 (2008)Google Scholar
  296. 296.
  297. 297.
    Pikuz, T.A., Faenov, A.Y., Gasilov, S.V., et al.: Propagation-based phase-contrast enhancement of nanostructure images using a debris-free femtosecond-laser-driven cluster-based plasma soft X-ray source and an LiF crystal detector. Appl. Opt. 48(32), 6271–6276 (2009)ADSCrossRefGoogle Scholar
  298. 298.
    Pirozhkov, A.S., Kando, M., Esirkepov, T.Z., et al.: Soft-x-ray harmonic Comb from relativistic electron spikes. Phys. Rev. Lett. 108, 135004 (2012)ADSCrossRefGoogle Scholar
  299. 299.
    Piskarskas, A., Stabinis, A., Yankauskas, A.: Phase phenomena in parametric amplifiers and generators of ultrashort light pulses. Phys. Usp. 29(9), 869–879 (1986)ADSCrossRefGoogle Scholar
  300. 300.
    Povarnitsyn, M.E., Itina, T.E., Sentis, M., et al.: Material decomposition mechanisms in femtosecond laser interactions with metals. Phys. Rev. B 75, 235414 (2007)ADSCrossRefGoogle Scholar
  301. 301.
    Povarnitsyn, M.E., Khishchenko, K.V., Levashov, P.R.: Phase transitions in femtosecond laser ablation. Appl. Surf. Sci. 255(10), 5120–5124 (2009)ADSCrossRefGoogle Scholar
  302. 302.
    Price, R.H., Rosen, M.D., Banner, D.L.: In: Nellis, W.J. Seaman, L. Graham, R.A. (eds.) Shock Waves in Condensed Matter-1981, p. 155. American Institute of Physics, New York (1982)Google Scholar
  303. 303.
    Prokhorov, A.M., Anisimov, S.I., Pashinin, P.P.: Laser thermonuclear fusion. Phys. Usp. 19(7), 547–560 (1976)ADSCrossRefGoogle Scholar
  304. 304.
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003)ADSCrossRefGoogle Scholar
  305. 305.
    Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74(4–5), 355–361 (2002)ADSCrossRefGoogle Scholar
  306. 306.
    Quéré, F., Thaury, C., Monot, P., et al.: Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006)ADSCrossRefGoogle Scholar
  307. 307.
    Raven, A., Willi, O., Rumsby, P.T.: Megagauss magnetic field profiles in laser-produced plasmas. Phys. Rev. Lett. 41, 554–557 (1978)ADSCrossRefGoogle Scholar
  308. 308.
    Reiss, H.R.: Unsuitability of the Keldysh parameter for laser fields. Phys. Rev. A 82, 023418 (2010)ADSCrossRefGoogle Scholar
  309. 309.
    Rohringer, N., Ryan, D., London, R.A., et al.: Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012)ADSCrossRefGoogle Scholar
  310. 310.
    Rohwetter, P., Kasparian, J., Stelmaszczyk, K., et al.: Laser-induced water condensation in air. Nat. Photonics 4(7), 451–456 (2010)ADSCrossRefGoogle Scholar
  311. 311.
    Romagnani, L., Bigongiari, A., Kar, S., et al.: Observation of magnetized soliton remnants in the wake of intense laser pulse propagation through plasmas. Phys. Rev. Lett. 105, 175002 (2010)ADSCrossRefGoogle Scholar
  312. 312.
    Rosmej, F.: Exotic states of high density matter driven by intense XUV/X-ray free electron lasers. In: Varro, S. (ed.) Free Electron Laser, chap. 8, pp. 187–212. InTech (2012)Google Scholar
  313. 313.
    Rosmej, F.B., Lee, R.W.: Hollow ion emission driven by pulsed intense X-ray fields. Europhys. Lett. 77(2), 24001 (2007)ADSCrossRefGoogle Scholar
  314. 314.
    Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., et al.: Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas. J. Phys. B Atomic Mol. Opt. Phys. 32(5), L107 (1999)ADSCrossRefGoogle Scholar
  315. 315.
    Rosmej, F.B., Lee, R.W., Riley, D., et al.: Warm dense matter and strongly coupled plasmas created by intense heavy ion beams and XUV-free electron laser: an overview of spectroscopic methods. J. Phys. Conf. Ser. 72(1), 012007 (2007)ADSCrossRefGoogle Scholar
  316. 316.
    Ross, J.S., Glenzer, S.H., Amendt, P., et al.: Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks. Phys. Plasmas 19(5), 056501 (2012)ADSCrossRefGoogle Scholar
  317. 317.
    Roth, M., Alber, I., Bagnoud, V., et al.: Proton acceleration experiments and warm dense matter research using high power lasers. Plasma Phys. Controlled Fusion 51(12), 124039 (2009)ADSCrossRefGoogle Scholar
  318. 318.
    Rubakov, V.A.: Multidimensional models of particle physics. Phys. Usp. 46(2), 211 (2003)ADSCrossRefGoogle Scholar
  319. 319.
    Rubakov, V.A., Shaposhnikov, M.E.: Do we live inside a domain wall? Phys. Lett. B 125(2–3), 136–138 (1983)ADSCrossRefGoogle Scholar
  320. 320.
    Rubenchik, A.M., Fedoruk, M.P., Turitsyn, S.K.: Laser beam self-focusing in the atmosphere. Phys. Rev. Lett. 102, 233902 (2009)ADSCrossRefGoogle Scholar
  321. 321.
    Rusek, M., Lagadec, H., Blenski, T.: Cluster explosion in an intense laser pulse: Thomas-Fermi model. Phys. Rev. A 63, 013203 (2000)ADSCrossRefGoogle Scholar
  322. 322.
    Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas 8(5), 1804–1816 (2001)ADSCrossRefGoogle Scholar
  323. 323.
    Rzadkiewicz, J., Gojska, A., Rosmej, O., et al.: Interpretation of the Si K α x-ray spectra accompanying the stopping of swift Ca ions in low-density SiO2 aerogel. Phys. Rev. A 82, 012703 (2010)ADSCrossRefGoogle Scholar
  324. 324.
    Saalmann, U., Siedschlag, C., Rost, J.M.: Mechanisms of cluster ionization in strong laser pulses. J. Phys. B Atomic Mol. Opt. Phys. 39(4) (2006)Google Scholar
  325. 325.
    Sagdeev, R.Z.: Cooperative phenomena and shock waves in collisionless plasmas (Collective processes in rarefied plasma, analyzing nonlinear undamped oscillations and shock waves). In: Leontovich, M.A. (ed.) Problems in Plasma Theory. Reviews of Plasma Physics, vol. 4, pp. 23–91. Consultants Bureau, New York (1966)Google Scholar
  326. 326.
    Sakabe, S., Shimizu, S., Hashida, M., et al.: Generation of high-energy protons from the coulomb explosion of hydrogen clusters by intense femtosecond laser pulses. Phys. Rev. A 69, 023203 (2004)ADSCrossRefGoogle Scholar
  327. 327.
    Sangster, T.C., Goncharov, V.N., Betti, R., et al.: Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega. Phys. Plasmas 17(5), 056312 (2010)ADSCrossRefGoogle Scholar
  328. 328.
    Sano, T., Ozaki, N., Sakaiya, T., et al.: Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa. Phys. Rev. B 83, 054117 (2011)ADSCrossRefGoogle Scholar
  329. 329.
    Sarkisov, G.S., Bychenkov, V.Y., Novikov, V.N., et al.: Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59(6), 7042–7054 (1999)ADSCrossRefGoogle Scholar
  330. 330.
    Sarri, G., Cecchetti, C.A., Jung, R., et al.: Spatially resolved measurements of laser filamentation in long scale length underdense plasmas with and without beam smoothing. Phys. Rev. Lett. 106, 095001 (2011)ADSCrossRefGoogle Scholar
  331. 331.
    Sarri, G., Kar, S., Romagnani, L., et al.: Observation of plasma density dependence of electromagnetic soliton excitation by an intense laser pulse. Phys. Plasmas 18(8), 080704 (2011)ADSCrossRefGoogle Scholar
  332. 332.
    Sasaki, A., Kishimoto, Y., Takahashi, E., et al.: Percolation simulation of laser-guided electrical discharges. Phys. Rev. Lett. 105, 075004 (2010)ADSCrossRefGoogle Scholar
  333. 333.
    Schenkel, T., Hamza, A., Barnes, A., Schneider, D.: Interaction of slow, very highly charged ions with surfaces. Prog. Surf. Sci. 61(2–4), 23–84 (1999)ADSCrossRefGoogle Scholar
  334. 334.
    Schlenvoigt, H.P., Haupt, K., Debus, A., et al.: A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4(2), 130–133 (2008)CrossRefGoogle Scholar
  335. 335.
    Schutzhold, R., Schaller, G., Habs, D.: Signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields. Phys. Rev. Lett. 97(12), 121302 (2006)ADSCrossRefGoogle Scholar
  336. 336.
    Schwoerer, H., Ewald, F., Sauerbrey, R., et al.: Fission of actinides using a tabletop laser. Europhys. Lett. 91(1), 47–52 (2003)ADSCrossRefGoogle Scholar
  337. 337.
    Schwoerer, H., Magill, J., Beleites, B. (eds.): Lasers and Nuclei: Applications of Ultrahigh Intensity Lasers in Nuclear Science. Lecture Notes in Physics, vol. 694. Springer, Berlin (2006)Google Scholar
  338. 338.
    Sedov, L.I.: Metody podobiya i razmernosti v mekhanike (Similarity and Dimensional Methods in Mechanics). Nauka, Moscow (1966). [Transl. of 4th Russ. ed. Academic Press, New York (1959)]Google Scholar
  339. 339.
    Seipt, D., Kämpfer, B.: Nonlinear Compton scattering of ultrashort intense laser pulses. Phys. Rev. A 83, 022101 (2011)ADSCrossRefGoogle Scholar
  340. 340.
    Seres, J., Seres, E., Hochhaus, D., et al.: Laser-driven amplification of soft X-rays by parametric stimulated emission in neutral gases. Nat. Phys. 2(06), 455–461 (2010)CrossRefGoogle Scholar
  341. 341.
    Seres, J., Seres, E., Verhoef, A.J., et al.: Laser technology: source of coherent kiloelectronvolt X-rays. Nature 433(02), 596 (2005)ADSCrossRefGoogle Scholar
  342. 342.
    Skripov, V.P.: Metastabil’naya zhidkost’ (Metastable Fluid). Nauka, Moscow (1972)Google Scholar
  343. 343.
    Smirnov, B.M.: Negative Ions. McGraw-Hill, New York (1992)Google Scholar
  344. 344.
    Smirnov, M.B., Skobelev, I.Y., Magunov, A.I., et al.: Microdroplet evolution induced by a laser pulse. J. Exp. Theor. Phys. 98(6), 1123 (2004)ADSCrossRefGoogle Scholar
  345. 345.
    Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., et al.: Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224–227 (1998)ADSCrossRefGoogle Scholar
  346. 346.
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985)ADSCrossRefGoogle Scholar
  347. 347.
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985)ADSCrossRefGoogle Scholar
  348. 348.
    Suckewer, S., Jaegle, P.: X-Ray laser: past, present, and future. Laser Phys. Lett. 6(6), 411–436 (2009)CrossRefGoogle Scholar
  349. 349.
    Sudan, R.N.: Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 70(20), 3075–3078 (1993)ADSCrossRefGoogle Scholar
  350. 350.
    Sugiyama, K., Fujii, T., Miki, M., et al.: Laser-filament-induced corona discharges and remote measurements of electric fields. Opt. Lett. 34(19), 2964–2966 (2009)ADSCrossRefGoogle Scholar
  351. 351.
    Solem, L.C., Veeser, L.R.: Los Alamos Sci. Lab. Report LASL-LA-96 9667-MS (1977)Google Scholar
  352. 352.
    Taguchi, T., Antonsen, T.M., Palastro, J., et al.: Particle in cell analysis of a laser-cluster interaction including collision and ionization processes. Opt. Express 18(3), 2389–2405 (2010)ADSCrossRefGoogle Scholar
  353. 353.
    Tajima, T.: Summary of Working Group 7 on “Exotic acceleration schemes”. AIP Conf. Proc. 569(1), 77–81 (2001)ADSMathSciNetCrossRefGoogle Scholar
  354. 354.
    Tajima, T., Kishimoto, Y., Downer, M.C.: Optical properties of cluster plasma. Phys. Plasmas 6(10), 3759–3764 (1999)ADSCrossRefGoogle Scholar
  355. 355.
    Tan, K.O., James, D.J., Nilson, J.A., et al.: Compact 0.1 tw co2 laser system. Rev. Sci. Instrum. 51(6), 776–780 (1980)Google Scholar
  356. 356.
    Tanaka, K.A., Yabuuchi, T., Sato, T., et al.: Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76(1), 013507 (2005)ADSCrossRefGoogle Scholar
  357. 357.
    Tatarakis, M., Gopal, A., Watts, I., et al.: Measurements of ultrastrong magnetic fields during relativistic laser–plasma interactions. Phys. Plasmas 9(5), 2244–2250 (2002)ADSCrossRefGoogle Scholar
  358. 358.
    Telnov, V.: Photon collider at TESLA. Nucl. Instrum. Methods Phys. Res. A 472(1–2), 43–60 (2001)ADSCrossRefGoogle Scholar
  359. 359.
    Temnov, V.V., Sokolowski-Tinten, K., Zhou, P., von der Linde, D.: Ultrafast imaging interferometry at femtosecond-laser-excited surfaces. J. Opt. Soc. Am. B 23(9), 1954–1964 (2006)ADSCrossRefGoogle Scholar
  360. 360.
    Teubner, U., Eidmann, K., Wagner, U., et al.: Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses. Phys. Rev. Lett. 92, 185001 (2004)ADSCrossRefGoogle Scholar
  361. 361.
    Teubner, U., Gibbon, P.: High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445–479 (2009)ADSCrossRefGoogle Scholar
  362. 362.
    Thoma M.H.: Field theoretic description of ultrarelativistic electron-positron plasmas. Rev. Mod. Phys. 81, 959 (2009)ADSCrossRefGoogle Scholar
  363. 363.
    Thomas, A.G.R., Krushelnick, K.: Betatron X-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields. Phys. Plasmas 16(10), 103103 (2009)ADSCrossRefGoogle Scholar
  364. 364.
    Toleikis, S., Fäustlin, R., Cao, L., et al.: Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures. High Energy Density Phys. 6(1), 15–20 (2010)ADSCrossRefGoogle Scholar
  365. 365.
    Trainor, R.J., Graboske, H.G., et al.: Lawrence Livermore Lab. Preprint UCRL-52562 (1978)Google Scholar
  366. 366.
    Trainor, R.J., Shaner, J.W., Auerbach, J.M., Holmes, N.C.: Ultrahigh-pressure laser-driven shock-wave experiments in aluminum. Phys. Rev. Lett. 42, 1154–1157 (1979)ADSCrossRefGoogle Scholar
  367. 367.
    Trainor, R.J., Holmes, N.C., More, R.M.: Lawrence Livermore Lab. Report UCRL-82429 (1979)Google Scholar
  368. 368.
    Trainor, R.J., Holmes, N.C., Anderson, R.A.: In: Nellis, W.J. Seaman, L. Graham, R.A. (eds.) Shock Waves in Condensed Matter-1981, p. 145. American Institute of Physics, New York (1982)Google Scholar
  369. 369.
    Trunin, R.F.: Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions. Phys. Usp. 37(11), 1123 (1994)ADSCrossRefGoogle Scholar
  370. 370.
    Umstadter, D.: Photonuclear physics: laser light splits atom. Nature 404(6775), 239 (2000)CrossRefGoogle Scholar
  371. 371.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870–892 (1976)ADSCrossRefGoogle Scholar
  372. 372.
    Upadhyay, A.K., Inogamov, N.A., Rethfeld, B., Urbassek, H.M.: Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold. Phys. Rev. B 78, 045437 (2008)ADSCrossRefGoogle Scholar
  373. 373.
    Urnov, A.M., Dubau, J., Faenov, A.Y., et al.: X-ray spectra of multiply-charged hollow ions in the emission from a femtosecond laser plasma. JETP Lett. 67(7), 489–494 (1998)ADSCrossRefGoogle Scholar
  374. 374.
    Vacca, J.R. (ed.): The World’s 20 Greatest Unsolved Problems. Prentice Hall PTR, Englewood Cliffs (2004)Google Scholar
  375. 375.
    van Kessel, C.G.M., Sigel, R.: Observation of laser-driven shock waves in solid hydrogen. Phys. Rev. Lett. 33, 1020–1023 (1974)ADSCrossRefGoogle Scholar
  376. 376.
    van Thiel, M. (ed.): Compendium of Shock Wave Data: Lawrence Livermore Lab. Report UCRL-50108 (1977)Google Scholar
  377. 377.
    Veeser, L.R., Solem, J.C.: Studies of laser-driven shock waves in aluminum. Phys. Rev. Lett. 40, 1391–1394 (1978)ADSCrossRefGoogle Scholar
  378. 378.
    Veeser, L.R., Solem, J.C., Lieber, A.J.: Impedance-match experiments using laser-driven shock waves. Appl. Phys. Lett. 35(10), 761–763 (1979)ADSCrossRefGoogle Scholar
  379. 379.
    Vinko, S.M., Ciricosta, O., Cho, B.I., et al.: Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59–62 (2012)ADSCrossRefGoogle Scholar
  380. 380.
    Virovlyansky, A.L., Makarov, D.V., Prants, S.V.: Ray and wave chaos in underwater acoustic waveguides. Phys. Usp. 55(1), 18–46 (2012)ADSCrossRefGoogle Scholar
  381. 381.
    Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., et al.: Shock compressibility of aluminum at p > 1 Gbar. JETP Lett. 39(2), 82 (1984)ADSGoogle Scholar
  382. 382.
    Volpe, L., Batani, D., Vauzour, B., et al.: Proton radiography of laser-driven imploding target in cylindrical geometry. Phys. Plasmas 18(1), 012704 (2011)ADSCrossRefGoogle Scholar
  383. 383.
    Wagner, U., Tatarakis, M., Gopal, A., et al.: Laboratory measurements of 0. 7 gg magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70(2), 026401 (2004)Google Scholar
  384. 384.
    Wang, X., Ischebeck, R., Muggli, P., et al.: Positron injection and acceleration on the wake driven by an electron beam in a foil-and-gas plasma. Phys. Rev. Lett. 101, 124801 (2008)ADSCrossRefGoogle Scholar
  385. 385.
    Wang, W.P., Shen, B.F., Zhang, X.M., et al.: Efficient acceleration of monoenergetic proton beam by sharp front laser pulse. Phys. Plasmas 18(1), 013103 (2011)ADSCrossRefGoogle Scholar
  386. 386.
    Weibel, E.S.: Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2(3), 83–84 (1959)ADSCrossRefGoogle Scholar
  387. 387.
    Whitley, V.H., McGrane, S.D., Eakins, D.E., et al.: The elastic-plastic response of aluminum films to ultrafast laser-generated shocks. J. Appl. Phys. 109(1), 013505 (2011)ADSCrossRefGoogle Scholar
  388. 388.
    Willingale, L., Thomas, A.G.R., Nilson, P.M., et al.: Fast advection of magnetic fields by hot electrons. Phys. Rev. Lett. 105, 095001 (2010)ADSCrossRefGoogle Scholar
  389. 389.
    Wood, L.L., Killer, R.N., Nuckolls, J.H.: Lawrence Livermore Lab. Report UCRL-79610 (1977)Google Scholar
  390. 390.
    Yaakobi, B., Bristow, T.C.: Measurement of reduced thermal conduction in (layered) laser-target experiments. Phys. Rev. Lett. 38, 350–353 (1977)ADSCrossRefGoogle Scholar
  391. 391.
    Yan, X.Q., Wu, H.C., Sheng, Z.M., et al.: Self-organizing GeV, Nanocoulomb, collimated proton beam from laser foil interaction at \(7 \times 10^{21}{\,}{\,}\boldsymbol{W}/\mathrm{cm}^{2}\). Phys. Rev. Lett. 103, 135001 (2009)ADSCrossRefGoogle Scholar
  392. 392.
    Yanovsky, V., Chvykov, V., Kalinchenko, G., et al.: Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16(3), 2109–2114 (2008)Google Scholar
  393. 393.
    Young, L., Kanter, E.P., Krassig, B., et al.: Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466(07), 56–61 (2010)ADSCrossRefGoogle Scholar
  394. 394.
    Zagar, T., Galy, J., Magill, J., Kellett, M.: Laser-generated nanosecond pulsed neutron sources: scaling from VULCAN to table-top. New J. Phys. 7, 253 (2005)ADSCrossRefGoogle Scholar
  395. 395.
    Zamponi, F., Lübcke, A., Kämpfer, T., et al.: Directional bremsstrahlung from a Ti laser-produced x-ray source at relativistic intensities in the 3˘12 keV range. Phys. Rev. Lett. 105, 085001 (2010)ADSCrossRefGoogle Scholar
  396. 396.
    Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics). Vek 2, Fryazino (2006)Google Scholar
  397. 397.
    Zeldovich, Y.B., Popov, V.S.: Electronic structure of superheavy atoms. Sov. Phys. Usp. 14, 673 (1972)ADSCrossRefGoogle Scholar
  398. 398.
    Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966). [English Transl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)]Google Scholar
  399. 399.
    Zhakhovskii, V.V., Nishihara, K., Anisimov, S.I., Inogamov, N.A.: Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transitions. JETP Lett. 71(4), 167–172 (2000)ADSCrossRefGoogle Scholar
  400. 400.
    Zhakhovskii, V., Inogamov, N., Nishihara, K.: Laser ablation and spallation of crystalline aluminum simulated by molecular dynamics. J. Phys. Conf. Ser. 112(4), 042080 (2008)ADSCrossRefGoogle Scholar
  401. 401.
    Zhakhovskii, V.V., Inogamov, N.A., Nishihara, K.: New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Lett. 87(8), 423–427 (2008)ADSCrossRefGoogle Scholar
  402. 402.
    Zhakhovskii, V.V., Inogamov, N.A., Petrov, Y.V., et al.: Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl. Surf. Sci. 255(24), 9592–9596 (2009)ADSCrossRefGoogle Scholar
  403. 403.
    Zhang, L., Chen, L.M., Yuan, D.W., et al.: Enhanced Kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Opt. Express 19(25), 25812–25822 (2011)ADSCrossRefGoogle Scholar
  404. 404.
    Zhang, L., Chen, L.M., Wang, W.M., et al.: Electron acceleration via high contrast laser interacting with submicron clusters. Appl. Phys. Lett. 100(1), 014104 (2012)ADSCrossRefGoogle Scholar
  405. 405.
    Zhidkov, A.G., Sasaki, A., Fukumoto, I., et al.: Pulse duration effect on the distribution of energetic particles produced by intense femtosecond laser pulses irradiating solids. Phys. Plasmas 8(8), 3718–3723 (2001)ADSCrossRefGoogle Scholar
  406. 406.
    Zhidkov, A., Koga, J., Sasaki, A., Uesaka, M.: Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma. Phys. Rev. Lett. 88, 185002 (2002)ADSCrossRefGoogle Scholar
  407. 407.
    Zhidkov, A., Esirkepov, T., Fujii, T., et al.: Characteristics of light reflected from a dense ionization wave with a tunable velocity. Phys. Rev. Lett. 103, 215003 (2009)ADSCrossRefGoogle Scholar
  408. 408.
    Zhidkov, A.G., Pikuz, S.A., Faenov, A.Y., et al.: Generation of hard X-rays by femtosecond laser pulse interaction with solid targets in atmosphere. Opt. Lett. 37(5), 884–886 (2012)ADSCrossRefGoogle Scholar
  409. 409.
    Zhigilei, L.V., Lin, Z., Ivanov, D.S.: Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion\(^{\dag }\). J. Phys. Chem. C 113(27), 11892–11906 (2009)CrossRefGoogle Scholar
  410. 410.
    Zhilyaev, P.A., Kuksin, A.Y., Stegailov, V.V., Yanilkin, A.V.: Influence of plastic deformation on fracture of an aluminum single crystal under shock-wave loading. Phys. Solid State 52(8), 1619 (2010)ADSCrossRefzbMATHGoogle Scholar
  411. 411.
    Zigler, A., Palchan, T., Bruner, N., et al.: 5.5–7.5 MeV proton generation by a moderate-intensity ultrashort-pulse laser interaction with H2O nanowire targets. Phys. Rev. Lett. 106, 134801 (2011)Google Scholar
  412. 412.
    Zimmerman, G.B., Kruer, W.L.: Numerical simulation of laser-initiated fusion. Comm. Plasma Phys. Controlled Fusion 2, 51 (1975)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Fortov
    • 1
  1. 1.Russian Academy of Sciences Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations