Skip to main content

High-Power Lasers in High-Energy-Density Physics

  • Chapter
Extreme States of Matter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 216))

Abstract

In this chapter we discuss the capabilities of modern laser facilities as applied to high energy density physics. We consider the physical effects that occur when substances are exposed to high-power laser radiation: shock-wave and ultrahigh-pressure generation, cluster plasma explosions, formation of “hollow” ions and high magnetic fields. We consider in detail the mechanics of ultrafast deformations and the thermodynamics for ultrashort laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For comparison, the ratio between 10 fs and 1 min is equal to the ratio between 1 min and the age of the universe.

References

  1. Abdallah, J., Faenov, A.Y., Skobelev, I.Y., et al.: Hot-electron influence on the x-ray emission spectra of Ar clusters heated by a high-intensity 60-fs laser pulse. Phys. Rev. A 63, 032706 (2001)

    Article  ADS  Google Scholar 

  2. Abdallah, J., Csanak, G., Fukuda, Y., et al.: Time-dependent Boltzmann kinetic model of X-rays produced by ultrashort-pulse laser irradiation of argon clusters. Phys. Rev. A 68, 063201 (2003)

    Article  ADS  Google Scholar 

  3. Afanas’ev, Y.V., Basov, N.G., et al.: Vzaimodeistvie moshchnogo lazernogo izlucheniya s plazmoi (Interaction of High-Power Laser Radiation with Plasma). In: Itogi nauki i tekhniki, vol. 17. VINITI, Moscow (1978)

    Google Scholar 

  4. Aglitskii, E.V., Safronova, U.I.: Spektroskopiya avtoionizatsionnykh sostoyanii atomnykh sistem (Spectroscopy of Autoionization States of Atomic Systems). Energoatomizdat, Moscow (1985)

    Google Scholar 

  5. Aglitskiy, Y., Lehecka, T., Deniz, A., et al.: X-ray emission from plasmas created by smoothed KrF laser irradiation. Phys. Plasmas 3(9), 3438–3447 (1996)

    Article  ADS  Google Scholar 

  6. Agranat, M.B., Andreev, N.E., Ashitkov, S.I., et al.: Determination of the transport and optical properties of a nonideal solid-density plasma produced by femtosecond laser pulses. JETP Lett. 85(6), 271–276 (2007)

    Article  ADS  Google Scholar 

  7. Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., et al.: Dynamics of plume and crater formation after action of femtosecond laser pulse. Appl. Surf. Sci. 253(15), 6276–6282 (2007)

    Article  ADS  Google Scholar 

  8. Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., et al.: Nanospallation induced by a femtosecond laser pulse. Proc. SPIE 6720(39), 672002.1–672002.12 (2008)

    Google Scholar 

  9. Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., et al.: Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses. JETP Lett. 91(9), 471–477 (2010)

    Article  ADS  Google Scholar 

  10. Albert, F., Phuoc, K.T., Shah, R., et al.: Full characterization of a laser-produced keV X-ray betatron source. Plasma Phys. Controlled Fusion 50(12), 124008 (2008)

    Article  ADS  Google Scholar 

  11. Alexeev, I., Antonsen, T.M., Kim, K.Y., Milchberg, H.M.: Self-focusing of intense laser pulses in a clustered gas. Phys. Rev. Lett. 90, 103402 (2003)

    Article  ADS  Google Scholar 

  12. Al’tshuler L.V., Bakanova A.A., Dudoladov I.P. et al.: Shock adiabatic curves of metals. J. Appl. Mech. Tech. Phys. 22(2), 145–169 (1981)

    Article  ADS  Google Scholar 

  13. an der Brügge, D., Pukhov, A.: Enhanced relativistic harmonics by electron nanobunching. Phys. Plasmas 17(3), 033110 (2010)

    Google Scholar 

  14. Andiel, U., Eidmann, K., Witte, K., et al.: Comparative study of time-resolved K-shell spectra from aluminum plasmas generated by ultrashort laser pulses at 395 and 790 nm. Appl. Phys. Lett. 80(2), 198–200 (2002)

    Article  ADS  Google Scholar 

  15. Anisimov, S.I.: Transition of hydrogen into the metallic state in a compression wave induced by a laser pulse. JETP Lett. 16(10), 404 (1972)

    ADS  Google Scholar 

  16. Anisimov, S., Imas, Y.A., Romanov, G.S., Khodyko, Y.V.: Deistvie izlucheniya bol’shoi moshchnosti na metally (Action of High-Power Radiation on Metals). Nauka, Moscow (1970)

    Google Scholar 

  17. Anisimov, S.I., Kapeliovich, B.L., Perelman, T.P.: Electron emission from metal surfaces exposed to ultrashort laser pulses. J. Exp. Theor. Phys. 39(2), 375 (1974)

    ADS  Google Scholar 

  18. Anisimov, S.I., Ivanov, M.F., Inogamov, N.A., et al.: Chislennoe modelirovanie lazernogo nagrevaniya i szhatiya prostykh obolochechnykh mishenei (Numerical simulation of laser-driven heating and compression of simple shell targets). Fiz. Plazmy 3(4), 723–732 (1977)

    ADS  Google Scholar 

  19. Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. Usp. 27(3), 181–205 (1984)

    Article  ADS  Google Scholar 

  20. Anisimov, S., Inogamov, N., Oparin, A., et al.: Pulsed laser evaporation: equation-of-state effects. Appl. Phys. A 69, 617–620 (1999)

    Article  ADS  Google Scholar 

  21. Anisimov, S.I., Zhakhovskii, V.V., Inogamov, N.A., et al.: Destruction of a solid film under the action of ultrashort laser pulse. JETP Lett. 77(11), 606–610 (2003)

    Article  ADS  Google Scholar 

  22. Anisimov, S., Zhakhovskii, V., Inogamov, N., et al.: Ablated matter expansion and crater formation under the action of ultrashort laser pulse. J. Exp. Theor. Phys. 103(2), 183–197 (2006)

    Article  ADS  Google Scholar 

  23. Anisimov, S.I., Zhakhovskii, V.V., Inogamov, N.A., et al.: Formirovanie kratera i otkol’noi obolochki korotkim lazernym impul’som (Crater and split-off shell formation by a short laser pulse). Matem. Modelirovanie 18(8), 111–122 (2006)

    MATH  Google Scholar 

  24. Anisimov, S., Inogamov, N., Petrov, Y., et al.: Numerical simulation of the expansion into vacuum of a crystal heated by an ultrashort laser pulse. In: Phipps, C. (ed.) Laser Ablation and Its Applications. Springer Series in Optical Sciences, vol. 129, pp. 1–16. Springer, Berlin (2007)

    Chapter  Google Scholar 

  25. Anisimov, S., Zhakhovskii, V., Inogamov, N., et al.: Simulation of the expansion of a crystal heated by an ultrashort laser pulse. Appl. Surf. Sci. 253(15), 6390–6393 (2007)

    Article  ADS  Google Scholar 

  26. Anisimov, S.I., Inogamov, N.A., Petrov, Y.V., et al.: Interaction of short laser pulses with metals at moderate intensities. Appl. Phys. A 92, 939–943 (2008)

    Article  ADS  Google Scholar 

  27. Anisimov, S.I., Inogamov, N.A., Petrov, Y.V., et al.: Thresholds for front-side ablation and rear-side spallation of metal foil irradiated by femtosecond laser pulse. Appl. Phys. A 92, 797–801 (2008)

    Article  ADS  Google Scholar 

  28. Antoun, T., Seaman, L., Curran, D.R., et al.: Spall Fracture. Springer, New York (2003)

    Google Scholar 

  29. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59(8), 086004 (1999)

    Article  ADS  Google Scholar 

  30. Arpin, P., Popmintchev, T., Wagner, N.L., et al.: Enhanced high harmonic generation from multiply ionized argon above 500 eV through laser pulse self-compression. Phys. Rev. Lett. 103, 143901 (2009)

    Article  ADS  Google Scholar 

  31. Asay, J.R., Fowles, G.R., Gupta, Y.: Determination of material relaxation properties from measurements on decaying elastic shock fronts. J. Appl. Phys. 43(2), 744–746 (1972)

    Article  ADS  Google Scholar 

  32. Ashitkov, S.I., Agranat, M.B., Kanel’, G.I., et al.: Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses. JETP Lett. 92(8), 516–520 (2010)

    Google Scholar 

  33. Ashitkov, S.I., Agranat, M., Kanel, G.I., Fortov, V.E.: Approaching the ultimate shear and tensile strength of aluminum in experiments with femtosecond pulse laser. AIP Conf. Proc. 1426(1), 1081–1084 (2012)

    Article  ADS  Google Scholar 

  34. Ashitkov, S.I., Inogamov, N.A., Komarov, P.S., et al.: Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating. AIP Conf. Proc. 1464(1), 120–125 (2012)

    Article  ADS  Google Scholar 

  35. Ashitkov, S.I., Inogamov, N.A., Zhakhovskii, V.V., et al.: Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse. JETP Lett. 95(4), 176–181 (2012)

    Article  ADS  Google Scholar 

  36. Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  37. Auerbach, J.M., Bailey, D., et al.: Lawrence Livermore Lab. Report UCRL-79636 (1977)

    Google Scholar 

  38. Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 36(5), 337–364 (1993)

    Article  ADS  Google Scholar 

  39. Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics research during nuclear explosions. Phys. Usp. 49(4), 432 (2006)

    Article  ADS  Google Scholar 

  40. Baeva, T., Gordienko, S., Pukhov, A.: Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006)

    Article  ADS  Google Scholar 

  41. Bahk, S.W., Rousseau, P., Planchon, T.A., et al.: Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29(24), 2837–2839 (2004)

    Article  ADS  Google Scholar 

  42. Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60(9), 092004 (1999)

    Google Scholar 

  43. Barker, L.M., Hollenbach, R.E.: Shock wave study of the alpha ⇄ epsilon phase transition in iron. J. Appl. Phys. 45(11), 4872–4887 (1974)

    Article  ADS  Google Scholar 

  44. Batani, D., Vovchenko, V.I., Kanel’, G.I., et al.: Mekhanicheskie svoistva veshchestva pri bol’shikh skorostyakh deformirovaniya, vyzvannogo deistviem lazernoi udarnoi volny (Mechanical properties of a material at ultrahigh strain rates induced by a laser shock wave). Dokl. Phys. 48(3), 123 (2003)

    Google Scholar 

  45. Bazhirov, T.T., Norman, G.E., Stegailov, V.V.: Cavitation in liquid metals under negative pressures. Molecular dynamics modeling and simulation. J. Phys. Condens. Matter 20(11) (2008)

    Google Scholar 

  46. Bell, A.R., Kirk, J.G.: Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403 (2008)

    Article  ADS  Google Scholar 

  47. Belokon’, V., Zabrodin, A.V., et al.: Preprint No. 39, IPM AN SSSR. Moscow (1978)

    Google Scholar 

  48. Belov, I.A., et al.: In: Int. conf. “X Kharitonov’s thematic scientific readings”, p. 145. RPhNZ-VNIIEPh, Sarov (2008)

    Google Scholar 

  49. Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., Matafonov, A.P.: Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets. Phys. Usp. 51(8), 793 (2008)

    Article  ADS  Google Scholar 

  50. Benjamin, R.F., McCall, G.H., Ehler, A.W.: Measurement of return current in a laser-produced plasma. Phys. Rev. Lett. 42, 890–893 (1979)

    Article  ADS  Google Scholar 

  51. Benuzzi-Mounaix, A., Koenig, M., Ravasio, A., et al.: Laser-driven shock waves for the study of extreme matter states. Plasma Phys. Controlled Fusion 48(12B), B347–B358 (2006)

    Article  Google Scholar 

  52. Benuzzi-Mounaix, A., Loupias, B., Koenig, M., et al.: Density measurement of low-Z shocked material from monochromatic X-ray two-dimensional images. Phys. Rev. E 77, 045402 (2008)

    Article  ADS  Google Scholar 

  53. Berg, L., Skupin, S., Nuter, R., et al.: Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70(10), 1633 (2007)

    Article  ADS  Google Scholar 

  54. Berkelbach, T.C., Colgan, J., Abdallah, J., et al.: Modeling energy dependence of the inner-shell X-ray emission produced by femtosecond-pulse laser irradiation of Xenon clusters. Phys. Rev. E 79, 016407 (2009)

    Article  ADS  Google Scholar 

  55. Berrill, M., Brizuela, F., Langdon, B., et al.: Warm photoionized plasmas created by soft-x-ray laser irradiation of solid targets. J. Opt. Soc. Am. B 25(7), B32–B38 (2008)

    Article  ADS  Google Scholar 

  56. Billon, D., Cognard, D., Launspach, J., et al.: Experimental study of plane and cylindrical laser driven, shock wave propagation. Opt. Commun. 15(1), 108–111 (1975)

    Article  ADS  Google Scholar 

  57. Bloomquist, D.D., Sheffield, S.A.: Optically recording interferometer for velocity measurements with subnanosecond resolution. J. Appl. Phys. 54(4), 1717–1722 (1983)

    Article  ADS  Google Scholar 

  58. Boiko, V.A., Vinogradov, A.V., Pikuz, S.A., et al.: Rentgenovskaya spektroskopiya lazernoi plazmy (X-Ray Spectroscopy of Laser-Produced Plasma). VINITI, Moscow (1980)

    Google Scholar 

  59. Boiko, V.A., Vinogradov, A.V., Pikuz, S.A., et al.: J. Sov. Laser Res. 6, 85 (1985)

    Google Scholar 

  60. Boiko, V.A., Pikuz, S.A., Skobelev, I.Y., Faenov, A.Y.: Rentgenovskaya spektroskopiya mnogozaryadnykh ionov (X-Ray Spectroscopy of Multiply Charged Ions). Energoatomizdat, Moscow (1988)

    Google Scholar 

  61. Boldarev, A.S., Gasilov, V.A., Blasco, F., et al.: Modeling cluster jets as targets for high-power ultrashort laser pulses. J. Exp. Theor. Phys. Lett. 73, 514–518 (2001)

    Google Scholar 

  62. Boldarev, A., Gasilov, V., Faenov, A.: On the generation of large clusters in forming gas-jet targets for lasers. Tech. Phys. 49, 388–395 (2004)

    Google Scholar 

  63. Boldarev, A.S., Gasilov, V.A., Faenov, A.Y., et al.: Gas-cluster targets for femtosecond laser interaction: modeling and optimization. Rev. Sci. Instrum. 77(8), 083112 (2006)

    Article  ADS  Google Scholar 

  64. Borghesi, M., Audebert, P., Bulanov, S.V., et al.: High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23(03), 291–295 (2005)

    Article  ADS  Google Scholar 

  65. Boyd, T.J.M., Ondarza-Rovira, R.: Anomalies in universal intensity scaling in ultrarelativistic laser-plasma interactions. Phys. Rev. Lett. 101, 125004 (2008)

    Article  ADS  Google Scholar 

  66. Briand, J.P., de Billy, L., Charles, P., et al.: Production of hollow atoms by the excitation of highly charged ions in interaction with a metallic surface. Phys. Rev. Lett. 65, 159–162 (1990)

    Article  ADS  Google Scholar 

  67. Brunel, F.: Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987)

    Article  ADS  Google Scholar 

  68. Buck, A., Nicolai, M., Schmid, K., et al.: Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543–548 (2011)

    Article  Google Scholar 

  69. Buersgens, F., Madison, K.W., Symes, D.R., et al.: Angular distribution of neutrons from deuterated cluster explosions driven by femtosecond laser pulses. Phys. Rev. E 74, 016403 (2006)

    Article  ADS  Google Scholar 

  70. Bula, C., McDonald, K.T., Prebys, E.J., et al.: Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76(17), 3116–3119 (1996)

    Article  ADS  Google Scholar 

  71. Bulanov, S.V.: New epoch in the charged particle acceleration by relativistically intense laser radiation. Plasma Phys. Controlled Fusion 48(12B), B29–B37 (2006)

    Article  Google Scholar 

  72. Bulanov, S.V., Inovenkov, I.N., Kirsanov, V.I., et al.: Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma. Phys. Fluids B 4(7), 1935–1942 (1992)

    Article  ADS  Google Scholar 

  73. Bulanov, S.V., Esirkepov, T., Tajima, T.: Light Intensification towards the Schwinger Limit. Phys. Rev. Lett. 91, 085001 (2003)

    Article  ADS  Google Scholar 

  74. Bulanov, S.S., Bychenkov, V.Y., Chvykov, V., et al.: Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17(4), 043105 (2010)

    Article  ADS  Google Scholar 

  75. Bulanov, S.S., Esirkepov, T.Z., Thomas, A.G.R., et al.: Schwinger limit attainability with extreme power lasers. Phys. Rev. Lett. 105, 220407 (2010)

    Article  ADS  Google Scholar 

  76. Bulanov, S.S., Mur, V.D., Narozhny, N.B., et al.: Multiple colliding electromagnetic pulses: a way to lower the threshold of \(e^{+}e^{-}\) pair production from vacuum. Phys. Rev. Lett. 104, 220404 (2010)

    Article  ADS  Google Scholar 

  77. Bulanov, S.V., Echkina, E.Y., Esirkepov, T.Z., et al.: Unlimited ion acceleration by radiation pressure. Phys. Rev. Lett. 104, 135003 (2010)

    Article  ADS  Google Scholar 

  78. Bunkenberg, J., Boles, J., Brown, D., et al.: The omega high-power phosphate-glass system: design and performance. IEEE J. Quantum Electron. 17(9), 1620–1628 (1981)

    Article  ADS  Google Scholar 

  79. Burke, D.L., Field, R.C., Horton-Smith, G., et al.: Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79(9), 1626–1629 (1997)

    Article  ADS  Google Scholar 

  80. Burnett, N.H., Josin, G., Ahlborn, B., Evans, R.: Generation of shock waves by hot electron explosions driven by a CO2 laser. Appl. Phys. Lett. 38(4), 226–228 (1981)

    Article  ADS  Google Scholar 

  81. Bychenkov, V., Kovalev, V.: Relativistic coulomb explosion of spherical microplasma. JETP Lett. 94, 97–100 (2011)

    Article  ADS  Google Scholar 

  82. Checkhlov, O., Divall, E.J., Ertel, K., et al.: Development of petawatt laser amplification systems at the central laser facility. Proc. SPIE 6735(1), 67350J (2007)

    Article  Google Scholar 

  83. Chen, P., Tajima, T.: Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett. 83(2), 256–259 (1999)

    Article  ADS  Google Scholar 

  84. Chen, H., Wilks, S.C., Meyerhofer, D.D., et al.: Relativistic quasimonoenergetic positron jets from intense laser-solid interactions. Phys. Rev. Lett. 105, 015003 (2010)

    Article  ADS  Google Scholar 

  85. Chen, L.M., Liu, F., Wang, W.M., et al.: Intense high-contrast femtosecond K-shell x-ray source from laser-driven Ar clusters. Phys. Rev. Lett. 104, 215004 (2010)

    Article  ADS  Google Scholar 

  86. Cherednikov, Y., Inogamov, N.A., Urbassek, H.M.: Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin LiF film. J. Opt. Soc. Am. B 28(8), 1817–1824 (2011)

    Article  ADS  Google Scholar 

  87. Chimier, B., Tikhonchuk, V.T.: Liquid-vapor phase transition and droplet formation by subpicosecond laser heating. Phys. Rev. B 79, 184107 (2009)

    Article  ADS  Google Scholar 

  88. Chiu, C., Fomytskyi, M., Grigsby, F., et al.: Laser electron accelerators for radiation medicine: a feasibility study. Med. Phys. 31(7), 2042–2052 (2004)

    Article  Google Scholar 

  89. Chu, H.H., Tsai, H.E., Chou, M.C., et al.: Collisional excitation soft X-ray laser pumped by optical field ionization in a cluster jet. Phys. Rev. A 71, 061804 (2005)

    Article  ADS  Google Scholar 

  90. Clatterbuck, D.M., Krenn, C.R., Cohen, M.L., Morris, J.W.: Phonon instabilities and the ideal strength of aluminum. Phys. Rev. Lett. 91, 135501 (2003)

    Article  ADS  Google Scholar 

  91. Colgan, J., Abdallah, J. Jr., Faenov, A., et al.: MUTA calculations of a laser-produced Mg hollow atom spectrum. Phys. Scr. 78(1), 015302 (2008)

    Article  ADS  Google Scholar 

  92. Colgan, J. Jr., Abdallah, J., Fontes, C., et al.: Non-LTE and gradient effects in K-shell oxygen emission laser-produced plasma. High Energy Density Phys. 6(3), 295–300 (2010)

    Article  ADS  Google Scholar 

  93. Colgan, J. Jr., Abdallah, J., Faenov, A.Y., et al.: Observation and modeling of high resolution spectral features of the inner-shell X-ray emission produced by 10−10 contrast femtosecond-pulse laser irradiation of argon clusters. High Energy Density Phys. 7(2), 77–83 (2011)

    Article  ADS  Google Scholar 

  94. Colgan, J., Abdallah, J.J., Faenov, A.Y., et al.: Exotic dense matter states pumped by relativistic laser plasma in a radiation dominated regime. Phys. Rev. Lett. 110, 125001 (2013)

    Article  ADS  Google Scholar 

  95. Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441(2–4), 47–189 (2007)

    Article  ADS  Google Scholar 

  96. Cowan, T.E., Hunt, A.W., Phillips, T.W., et al.: Photonuclear fission from high energy electrons from ultraintense laser-solid interactions. Phys. Rev. Lett. 84(5), 903–906 (2000)

    Article  ADS  Google Scholar 

  97. Crowhurst, J.C., Armstrong, M.R., Knight, K.B., et al.: Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold. Phys. Rev. Lett. 107, 144302 (2011)

    Article  ADS  Google Scholar 

  98. Decoste, R., Kieffer, J.C., Pépin, H.: Spatial characteristics of continuum x-ray emission from lateral energy transport in CO2-laser-produced plasmas. Phys. Rev. Lett. 47, 35–38 (1981)

    Article  ADS  Google Scholar 

  99. Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., Oleynik, I.I.: Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B 82, 064113 (2010)

    Article  ADS  Google Scholar 

  100. Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., Oleynik, I.I.: Molecular dynamics simulations of femtosecond laser ablation and spallation of gold. AIP Conf. Proc. 1278(1), 121–130 (2010)

    Article  ADS  Google Scholar 

  101. Demaske, B.J., Zhakhovsky, V.V., White, C.T., Oleynik, I.I.: Evolution of metastable elastic shockwaves in nickel. AIP Conf. Proc. 1426(1), 1303–1306 (2012)

    Article  ADS  Google Scholar 

  102. Diamant, R., Huotari, S., Hämäläinen, K., et al.: Evolution from threshold of a hollow atom’s x-ray emission spectrum: the Cu K h α 1, 2 hypersatellites. Phys. Rev. Lett. 84, 3278–3281 (2000)

    Article  ADS  Google Scholar 

  103. Diamant, R., Huotari, S., Hämäläinen, K., et al.: Diagram x-ray emission spectra of a hollow atom: the K h α 1, 2 and K h β 1, 3 hypersatellites of Fe. Phys. Rev. Lett. 91, 193001 (2003)

    Article  ADS  Google Scholar 

  104. Didenko, A.N., Rashchikov, V.I., Fortov, V.E.: O vozmozhnosti generatsii moshchnogo izlucheniya teragertsovogo diapazona chastot pri vozdeistvii moshchnykh lazernykh impul’sov na mishen’ (Mechanism of generation of high-intensity terahertz radiation under the action of high-power laser pulsed on a target). Tech. Phys. 56(10), 1535 (2011)

    Article  Google Scholar 

  105. Disdier, L., Garconnet, J.P., Malka, G., Miquel, J.L.: Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys. Rev. Lett. 82(7), 1454–1457 (1999)

    Article  ADS  Google Scholar 

  106. Ditmire, T., Tisch, J., Springate, E., et al.: High-energy ions produced in explosions of superheated atomic clusters. Nature 386(6620), 54–56 (1997)

    Article  ADS  Google Scholar 

  107. Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398(6727), 489–492 (1999)

    Article  ADS  Google Scholar 

  108. Ditmire, T., Bless, S., Dyer, G., et al.: Overview of future directions in high energy-density and high-field science using ultra-intense lasers. Radiat. Phys. Chem. 70(4–5), 535–552 (2004)

    Article  ADS  Google Scholar 

  109. Dong, P., Reed, S.A., Yi, S.A., et al.: Formation of optical bullets in laser-driven plasma bubble accelerators. Phys. Rev. Lett. 104, 134801 (2010)

    Article  ADS  Google Scholar 

  110. Donnelly, T.D., Ditmire, T., Neuman, K., et al.: High-order harmonic generation in atom clusters. Phys. Rev. Lett. 76, 2472–2475 (1996)

    Article  ADS  Google Scholar 

  111. Dorchies, F., Blasco, F., Caillaud, T., et al.: Spatial distribution of cluster size and density in supersonic jets as targets for intense laser pulses. Phys. Rev. A 68, 023201 (2003)

    Article  ADS  Google Scholar 

  112. Dorchies, F., Blasco, F., Bonté, C., et al.: Observation of subpicosecond x-ray emission from laser-cluster interaction. Phys. Rev. Lett. 100, 205002 (2008)

    Article  ADS  Google Scholar 

  113. Doumy, G., Roedig, C., Son, S.K., et al.: Nonlinear atomic response to intense ultrashort x rays. Phys. Rev. Lett. 106, 083002 (2011)

    Article  ADS  Google Scholar 

  114. Dromey, B., Zepf, M., Gopal, A., et al.: High harmonic generation in the relativistic limit. Nat. Phys. 2(7), 456–459 (2006)

    Article  Google Scholar 

  115. Dromey, B., Kar, S., Bellei, C., et al.: Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99(8) (2007)

    Google Scholar 

  116. Dromey, B., Adams, D., Hoerlein, R., et al.: Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nat. Phys. 5(2), 146–152 (2009)

    Article  Google Scholar 

  117. Duvall, G.E.: Propagation of plane shock waves in a stress-relaxing medium. In: Kolsky, H., Prager, W. (eds.) Stress Waves in Anelastic Solids. Springer, Berlin (1964)

    Google Scholar 

  118. Eggert, J.H., Hicks, D.G., Celliers, P.M., et al.: Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6(1), 40–43 (2010)

    Article  Google Scholar 

  119. Eisenmann, S., Pukhov, A., Zigler, A.: Fine structure of a laser-plasma filament in air. Phys. Rev. Lett. 98, 155002 (2007)

    Article  ADS  Google Scholar 

  120. Eisenmann, S., Peñano, J., Sprangle, P., Zigler, A.: Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments. Phys. Rev. Lett. 100, 155003 (2008)

    Article  ADS  Google Scholar 

  121. ELI: The Extreme Light Infrastructure European Project: ELI homepage

    Google Scholar 

  122. Eliezer, S., Moshe, E., Eliezer, D.: Laser-induced tension to measure the ultimate strength of metals related to the equation of state. Laser Part. Beams 20(01), 87–92 (2002)

    Article  ADS  Google Scholar 

  123. Eliezer, S., Mendonca, J.T., Bingham, R., Norreys, P.: A new diagnostic for very high magnetic fields in expanding plasmas. Phys. Lett. A 336(4–5), 390–395 (2005)

    Article  ADS  MATH  Google Scholar 

  124. Erk, B., Hoffmann, K., Kandadai, N., et al.: Observation of shells in Coulomb explosions of rare-gas clusters. Phys. Rev. A 83, 043201 (2011)

    Article  ADS  Google Scholar 

  125. Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Article  ADS  Google Scholar 

  126. Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96(10), 105001 (2006)

    Article  ADS  Google Scholar 

  127. Faenov, A.Y., Skobelev, I.Y., Pikuz, S.A., et al.: High-resolution x-ray spectroscopy of a subpicosecond-laser-produced silicon plasma. Phys. Rev. A 51, 3529–3533 (1995)

    Article  ADS  Google Scholar 

  128. Faenov, A.Y., Joseph Abdallah, J., Clark, R.E.H., et al.: High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation, pp. 10–20. In: Proceedings of SPIE (1997)

    Google Scholar 

  129. Faenov, A.Y., Magunov, A.I., Pikuz, T.A., et al.: High-resolved x-ray spectra of hollow atoms in a femtosecond laser-produced solid plasma. Phys. Scr. 1999(T80B), 536 (1999)

    Google Scholar 

  130. Faenov, A.Y., Inogamov, N.A., Zhakhovskii, V.V., et al.: Low-threshold ablation of dielectrics irradiated by picosecond soft X-ray laser pulses. Appl. Phys. Lett. 94(23), 231107 (2009)

    Google Scholar 

  131. Faenov, A.Y., Pikuz, T.A., Skobelev, I.Y., et al.: Hollow ion spectra in warm dense laser-produced plasma: observation and modeling. J. Plasma Fusion Res. Ser. 8, 1210–1213 (2009)

    Google Scholar 

  132. Faenov, A.Y., Fukuda, Y., Pikuz, T.A., et al.: Investigation of interaction of short laser pulses with large clusters and applications to imaging processes. J. Korean Phys. Soc. 56(1), 279–286 (2010)

    Google Scholar 

  133. Faenov, A., Skobelev, I., Pikuz, T., et al.: Diagnostics of the early stage of the heating of clusters by a femtosecond laser pulse from the spectra of hollow ions. JETP Lett. 94, 171–176 (2011)

    Article  ADS  Google Scholar 

  134. Fedotov, A.M., Narozhny, N.B., Mourou, G., Korn, G.: Limitations on the attainable intensity of high power lasers. Phys. Rev. Lett. 105, 080402 (2010)

    Article  ADS  Google Scholar 

  135. Fennel, T., Meiwes-Broer, K.H., Tiggesbäumker, J., et al.: Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82, 1793–1842 (2010)

    Article  ADS  Google Scholar 

  136. Fortov, V.E.: Dynamic methods in plasma physics. Phys. Usp. 25(11), 781–809 (1982)

    Article  ADS  Google Scholar 

  137. Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)

    Google Scholar 

  138. Fortov, V.E.: Ekstremal’nye sostoyaniya veshchestva (Extreme States of Matter). Fizmatlit, Moscow (2009). [Translated into English: Extreme States of Matter. Series: The Frontiers Collection. Springer, Berlin, Heidelberg (2011)]

    Google Scholar 

  139. Fortov, V.E.: Extreme states of matter on earth and in space. Phys. Usp. 52(6), 615–647 (2009)

    Google Scholar 

  140. Fortov, V.E.: Extreme States of Matter. Springer, Berlin (2010)

    Google Scholar 

  141. Fortov, V.E., Morfill, G.E.: Complex and Dusty Plasmas: From Laboratory to Space. CRC Press, Boca Raton (2010)

    Google Scholar 

  142. Fortov, V.E., Batani, D., Kilpio, A.V., et al.: The spall strength limit of matter at ultrahigh strain rates induced by laser shock waves. Laser Part. Beams 20(02), 317–320 (2002)

    Article  ADS  Google Scholar 

  143. Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  144. Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008)

    Article  ADS  Google Scholar 

  145. Fuchs, M., Weingartner, R., Popp, A., Major, Z., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Horlein, R., Tsakiris, G.D., Schramm, U., Rowlands-Rees, T.P., Hooker, S.M., Habs, D., Krausz, F., Karsch, S., Grüner, F.: Laser-driven soft-X-ray undulator source. Nat. Phys. 5(09), 826–829 (2009)

    Article  Google Scholar 

  146. Fujimoto, M., Matsukado, K., Takahashi, H., et al.: Diagnosis of laser-induced relativistic plasma by positron imaging technique. Appl. Phys. Lett. 93(25), 251101 (2008)

    Article  ADS  Google Scholar 

  147. Fujimoto, M., Matsukado, K., Takahashi, H., et al.: Repetitive production of positron emitters using deuterons accelerated by multiterawatt laser pulses. Rev. Sci. Instrum. 80(11), 113301 (2009)

    Article  ADS  Google Scholar 

  148. Fujiwara, M., Kawase, K., Titov, A.T.: Parity non-conservation measurements with photons at SPring-8. AIP Conf. Proc. 802(1), 246–249 (2005)

    Article  ADS  Google Scholar 

  149. Fukuda, Y., Faenov, A.Y., Pikuz, T., et al.: Soft X-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters. Appl. Phys. Lett. 92(12), 121110 (2008)

    Article  ADS  Google Scholar 

  150. Fukuda, Y., Faenov, A.Y., Tampo, M., et al.: Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103, 165002 (2009)

    Article  ADS  Google Scholar 

  151. Galy, J., Maucec, M., Hamilton, D.J., et al.: Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys. 9(2), 23 (2007)

    Article  ADS  Google Scholar 

  152. Gao, X., Wang, X., Shim, B., et al.: Characterization of cluster/monomer ratio in pulsed supersonic gas jets. Appl. Phys. Lett. 100(6), 064101 (2012)

    Article  ADS  Google Scholar 

  153. Garnov, S.V., Shcherbakov, I.A.: Laser methods for generating megavolt terahertz pulses. Phys. Usp. 54(1), 91–96 (2011)

    Article  ADS  Google Scholar 

  154. Gasparyan, P.D., Starikov, F.A., Starostin, A.N.: Angular divergence and spatial coherence of X-ray laser radiation. Phys. Usp. 41(8), 761–792 (1998)

    Article  ADS  Google Scholar 

  155. Gauthier, J.C., Geindre, J.P., Audebert, P., et al.: Observation of KL → LL x-ray satellites of aluminum in femtosecond laser-produced plasmas. Phys. Rev. E 52, 2963–2968 (1995)

    Article  ADS  Google Scholar 

  156. Giddings, S.B., Thomas, S.: High energy colliders as black hole factories: the end of short distance physics. Phys. Rev. D 65(5), 056010 (2002)

    Article  ADS  Google Scholar 

  157. Ginzburg, V.L.: Applications of Electrodynamics in Theoretical Physics and Astrophysics. Gordon and Breach, New York (1989)

    Google Scholar 

  158. Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)

    Book  Google Scholar 

  159. Giulietti, A., Bourgeois, N., Ceccotti, T., et al.: Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. Phys. Rev. Lett. 101, 105002 (2008)

    Article  ADS  Google Scholar 

  160. Giovanielli, D.V.: Wavelength effects in laser fusion. Bull. Am. Phys. Soc. 21, 1047 (1976)

    Google Scholar 

  161. Goldstone, P.D., Benjamin, R.F., Schultz, R.B.: Shock-wave production and plasma motion in CO2-laser-irradiated targets. Appl. Phys. Lett. 38(4), 223–225 (1981)

    Article  ADS  Google Scholar 

  162. Gonoskov, A.A., Korzhimanov, A.V., Kim, A.V., et al.: Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses. Phys. Rev. E 84, 046403 (2011)

    Article  ADS  Google Scholar 

  163. Gordienko, S., Pukhov, A., Shorokhov, O., Baeva, T.: Coherent focusing of high harmonics: a new way towards the extreme intensities. Phys. Rev. Lett. 94, 103903 (2005)

    Article  ADS  Google Scholar 

  164. Graboske, H., Wong, L.: Lawrence Livermore Lab. Report UCRL-52323 (1977)

    Google Scholar 

  165. Grillon, G., Balcou, P., Chambaret, J.P., et al.: Deuterium-deuterium fusion dynamics in low-density molecular-cluster jets irradiated by intense ultrafast laser pulses. Phys. Rev. Lett. 89, 065005 (2002)

    Article  ADS  Google Scholar 

  166. Grun, J., Decoste, R., Ripin, B.H.: Naval Res. Lab. Memorandum Report 4410 (1981)

    Google Scholar 

  167. Hafz, N.A.M., Jeong, T.M., Choi, I.W., et al.: Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nat. Photonics 2, 571–577 (2008)

    Article  Google Scholar 

  168. Hagena, O.F.: Cluster ion sources (invited). Rev. Sci. Instrum. 63(4), 2374–2379 (1992)

    Article  ADS  Google Scholar 

  169. Harrach, R.J., Lee, Y.T., et al.: In: Nellis, W.J., Seaman, L., Graham, R.A. (eds.) Shock Waves in Condensed Matter-1981, p. 164. American Institute of Physics, New York (1982)

    Google Scholar 

  170. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  171. Hayakawa, T., Ohgaki, H., Shizuma, T., et al.: Nondestructive detection of hidden chemical compounds with laser compton-scattering gamma rays. Rev. Sci. Instrum. 80(4), 045110 (2009)

    Article  ADS  Google Scholar 

  172. Hayashi, Y., Fukuda, Y., Faenov, A.Y., et al.: Intense and reproducible Kα emissions from micron-sized Kr cluster target irradiated with intense femtosecond laser pulses. Jpn. J. Appl. Phys. 49(12), 126401 (2010)

    Article  ADS  Google Scholar 

  173. Hayashi, Y., Pirozhkov, A.S., Kando, M., et al.: Efficient generation of Xe K-shell X-rays by high-contrast interaction with submicrometer clusters. Opt. Lett. 36(9), 1614–1616 (2011)

    Article  ADS  Google Scholar 

  174. Heinzl, T., Seipt, D., Kämpfer, B.: Beam-shape effects in nonlinear Compton and Thomson scattering. Phys. Rev. A 81, 022125 (2010)

    Article  ADS  Google Scholar 

  175. Henig, A., Steinke, S., Schnürer, M., et al.: Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009)

    Article  ADS  Google Scholar 

  176. HERCULES, http://www.engin.umich.edu/research/cuos/researchgroups/hfs/experimentalfacilities/herculespetawattlaser.htm

  177. Higginbotham, A.P., Semonin, O., Bruce, S., et al.: Generation of Mie size microdroplet aerosols with applications in laser-driven fusion experiments. Rev. Sci. Instrum. 80(6), 063503 (2009)

    Article  ADS  Google Scholar 

  178. Higginson, D.P., McNaney, J.M., Swift, D.C., et al.: Laser generated neutron source for neutron resonance spectroscopy. Phys. Plasmas 17(10), 100701 (2010)

    Article  ADS  Google Scholar 

  179. HiPER: High Power Laser Energy Research Project: HiPER homepage

    Google Scholar 

  180. Hoffmann, K., Murphy, B., Kandadai, N., et al.: Rare-gas-cluster explosions under irradiation by intense short XUV pulses. Phys. Rev. A 83, 043203 (2011)

    Article  ADS  Google Scholar 

  181. Hudson, L., Seely, J.: Laser-produced X-ray sources. Radiat. Phys. Chem. 79(2), 132–138 (2010)

    Article  ADS  Google Scholar 

  182. Huntington, C.M., Thomas, A.G.R., McGuffey, C., et al.: Current filamentation instability in laser wakefield accelerators. Phys. Rev. Lett. 106, 105001 (2011)

    Article  ADS  Google Scholar 

  183. Holmes, N.C., Trainor, R.J., Anderson, R.: In: Nellis, W.J., Seaman, L., Graham, R.A. (eds.) Shock Waves in Condensed Matter-1981, p. 160. American Institute of Physics, New York (1982)

    Google Scholar 

  184. Inogamov, N.A., Anisimov, S.I., Retfeld, B.: Rarefaction wave and gravitational equilibrium in a two-phase liquid-vapor medium. J. Exp. Theor. Phys. 88(6), 1143 (1999)

    Article  ADS  Google Scholar 

  185. Inogamov, N.A., Petrov, Y.V., Anisimov, S.I., et al.: Expansion of matter heated by an ultrashort laser pulse. JETP Lett. 69(4), 310–316 (1999)

    Article  ADS  Google Scholar 

  186. Inogamov, N.A., Anisimov, S.I., Petrov, Y.V., et al.: Theoretical and experimental study of hydrodynamics of metal target irradiated by ultrashort laser pulse. In: Proc. SPIE 7005, High-Power Laser Ablation VII, pp. 70052F–70052F–10 (2008)

    Google Scholar 

  187. Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., et al.: Nanospallation induced by an ultrashort laser pulse. J. Exp. Theor. Phys. 107(1), 1 (2008)

    Article  ADS  Google Scholar 

  188. Inogamov, N.A., Faenov, A.Y., Khokhlov, V.A., et al.: Spallative ablation of metals and dielectrics. Contrib. Plasma Phys. 49(7–8), 455–466 (2009)

    Article  ADS  Google Scholar 

  189. Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., et al.: Two-temperature relaxation and melting after absorption of femtosecond laser pulse. Appl. Surf. Sci. 255(24), 9712–9716 (2009)

    Article  ADS  Google Scholar 

  190. Inogamov, N., Ashitkov, S., Zhakhovsky, V., et al.: Acoustic probing of two-temperature relaxation initiated by action of ultrashort laser pulse. Appl. Phys. A 101, 1–5 (2010)

    Article  ADS  Google Scholar 

  191. Inogamov, N.A., Zhakhovsky, V.V., Ashitkov, S.I., et al.: Pump-probe method for measurement of thickness of molten layer produced by ultrashort laser pulse. AIP Conf. Proc. 1278(1), 590–599 (2010)

    Article  ADS  Google Scholar 

  192. Inogamov, N.A., Zhakhovsky, V.V., Faenov, A.Y., et al.: Spallative ablation of dielectrics by X-ray laser. Appl. Phys. A 101, 87–96 (2010)

    Article  ADS  Google Scholar 

  193. Inogamov, N.A., Anisimov, S.I., Zhakhovskii, V.V., et al.: Ablation of insulators under the action of short pulses of X-ray plasma lasers and free-electron lasers. J. Opt. Technol. 78(8), 473 (2011)

    Article  Google Scholar 

  194. Inogamov, N.A., Anisimov, S.I., Zhakhovsky, V.V., et al.: Ablation by short optical and X-ray laser pulses. Proc. SPIE Int. Soc. Opt. Eng. 7996 (2011)

    Google Scholar 

  195. Inogamov, N.A., Faenov, A.Y., Zhakhovskii, V.V., et al.: Interaction of short laser pulses in wavelength range from infrared to x-ray with metals, semiconductors, and dielectrics. Contrib. Plasma Phys. 51(4), 361–366 (2011)

    Article  ADS  Google Scholar 

  196. Inogamov, N.A., Faenov, A.Y., Zhakhovsky, V.V., et al.: Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse. Contrib. Plasma Phys. 51(5), 419–426 (2011)

    Article  ADS  Google Scholar 

  197. Inogamov, N.A., Zhakhovskii, V.V., Khokhlov, V.A., Shepelev, V.V.: Superelasticity and the propagation of shock waves in crystals. JETP Lett. 93(4), 226–232 (2011)

    Article  ADS  Google Scholar 

  198. Inogamov, N.A., Zhakhovsky, V.V., Ashitkov, S.I., et al.: Laser acoustic probing of two-temperature zone created by femtosecond pulse. Contrib. Plasma Phys. 51(4), 367–374 (2011)

    Article  ADS  Google Scholar 

  199. Inogamov, N., Khokhlov, V., Petrov, Y., et al.: Ultrashort elastic and plastic shockwaves in aluminum. AIP Conf. Proc. 1426(1), 909–912 (2012)

    Article  ADS  Google Scholar 

  200. Inogamov, N.A., Petrov, Y.V., Zhakhovsky, V.V., et al.: Two-temperature thermodynamic and kinetic properties of transition metals irradiated by femtosecond lasers. AIP Conf. Proc. 1464(1), 593–608 (2012)

    Article  ADS  Google Scholar 

  201. Insepov, Z., Hassanein, A., Bazhirov, T.T., et al.: Molecular dynamics simulations of bubble formation and cavitation in liquid metals. Fusion Sci. Technol. 52(4), 885–889 (2007)

    Google Scholar 

  202. Ishino, M., Faenov, A.Y., Tanaka, M., et al.: Nanoscale surface modifications and formation of conical structures at aluminum surface induced by single shot exposure of soft X-ray laser pulse. J. Appl. Phys. 109(1), 013504 (2011)

    Article  ADS  Google Scholar 

  203. Issac, R.C., Vieux, G., Ersfeld, B., et al.: Ultra hard x rays from krypton clusters heated by intense laser fields. Phys. Plasmas 11(7), 3491–3496 (2004)

    Article  ADS  Google Scholar 

  204. Lang, J.M. Jr., Gupta, Y.M.: Strength and elastic deformation of natural and synthetic diamond crystals shock compressed along [100]. J. Appl. Phys. 107(11), 113538 (2010)

    Article  ADS  Google Scholar 

  205. Jahnátek, M., Hafner, J., Krajčí, M.: Shear deformation, ideal strength, and stacking fault formation of FCC metals: a density-functional study of Al and Cu. Phys. Rev. B 79, 224103 (2009)

    Article  ADS  Google Scholar 

  206. Jung, I.D., Kartner, F.X., Matuschek, N., et al.: Self-starting 6.5-fs pulses from a Ti:sapphire laser. Opt. Lett. 22(13), 1009–1011 (1997)

    Google Scholar 

  207. Kando, M., Nakajima, K., Arinaga, M., et al.: Interaction of terawatt laser with plasma. J. Nucl. Mater. 248(1), 405–407 (1997)

    Article  ADS  Google Scholar 

  208. Kando, M., Pirozhkov, A.S., Kawase, K., et al.: Enhancement of photon number reflected by the relativistic flying mirror. Phys. Rev. Lett. 103, 235003 (2009)

    Article  ADS  Google Scholar 

  209. Kanel, G.I., Rasorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. Springer, New York (2004)

    Book  Google Scholar 

  210. Kanel, G.I., Razorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. High Pressure Shock Compression of Condensed Matter. Springer (2004)

    Book  Google Scholar 

  211. Kanel, G.I., Fortov, V.E., Razorenov, S.V.: Shock waves in condensed-state physics. Phys. Usp. 50(8), 771–791 (2007)

    Article  ADS  Google Scholar 

  212. Kanel, G.: Spall fracture: methodological aspects, mechanisms and governing factors. Int. J. Fract. 163, 173–191 (2010)

    Article  MATH  Google Scholar 

  213. Karagodsky, V., Schieber, D., Schächter, L.: Enhancing X-ray generation by electron-beam˘laser interaction in an optical Bragg structure. Phys. Rev. Lett. 104, 024801 (2010)

    Article  ADS  Google Scholar 

  214. Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametric amplifiers: their state and prospects. Phys. Usp. 51(9), 969 (2008)

    Article  ADS  Google Scholar 

  215. Kishimoto, Y., Masaki, T., Tajima, T.: High energy ions and nuclear fusion in laser–cluster interaction. Phys. Plasmas 9(2), 589–601 (2002)

    Article  ADS  Google Scholar 

  216. Kneip, S., McGuffey, C., Martins, J.L., et al.: Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6(10), 980–983 (2010)

    Article  Google Scholar 

  217. Kodama, R., Tanaka, K.A., Sentoku, Y., et al.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 84(4), 674–677 (2000)

    Article  ADS  Google Scholar 

  218. Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., et al.: Numerical modeling of shock-wave instability in thermodynamically nonideal media. J. Exp. Theor. Phys. 98(4), 811–819 (2004)

    Article  ADS  Google Scholar 

  219. Korzhimanov, A.V., Gonoskov, A.A., Khazanov, E.A., Sergeev, A.M.: Horizons of petawatt laser technology. Phys. Usp. 54(1), 9–28 (2011)

    Article  ADS  Google Scholar 

  220. Kotaki, H., Daito, I., Kando, M., et al.: Electron optical injection with head-on and countercrossing colliding laser pulses. Phys. Rev. Lett. 103, 194803 (2009)

    Article  ADS  Google Scholar 

  221. Krainov, V.P., Smirnov, M.B.: The evolution of large clusters under the action of ultrashort superintense laser pulses. Phys. Usp. 43(9), 901–920 (2000)

    Article  ADS  Google Scholar 

  222. Krainov, V.P., Smirnov, B.M., Smirnov, M.B.: Femtosecond excitation of cluster beams. Phys. Usp. 50(9), 907–931 (2007)

    Article  ADS  Google Scholar 

  223. Kritcher, A.L., Neumayer, P., Castor, J., et al.: Ultrafast X-ray Thomson scattering of shock-compressed matter. Science 322(5898), 69–71 (2008)

    Article  ADS  Google Scholar 

  224. Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading (1988)

    Google Scholar 

  225. Kugland, N.L., Constantin, C.G., Neumayer, P., et al.: High Kα X-ray conversion efficiency from extended source gas jet targets irradiated by ultra short laser pulses. Appl. Phys. Lett. 92(24), 241504 (2008)

    Article  ADS  Google Scholar 

  226. Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Suk, H.: Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the interaction of an ultrashort laser pulse with a nanofilm. Phys. Rev. Lett. 99, 124801 (2007)

    Article  ADS  Google Scholar 

  227. Kuramitsu, Y., Sakawa, Y., Morita, T., et al.: Time evolution of collisionless shock in counterstreaming laser-produced plasmas. Phys. Rev. Lett. 106, 175002 (2011)

    Article  ADS  Google Scholar 

  228. Kuramitsu, Y., Sakawa, Y., Dono, S., et al.: Kelvin-Helmholtz turbulence associated with collisionless shocks in laser produced plasmas. Phys. Rev. Lett. 108, 195004 (2012)

    Article  ADS  Google Scholar 

  229. Landau, L.D., Lifshits, E.M.: Fluid Mechanics, 2nd edn. Pergamon Press, Oxford (1987)

    MATH  Google Scholar 

  230. Last, I., Ron, S., Jortner, J.: Aneutronic H + 11B nuclear fusion driven by Coulomb explosion of hydrogen nanodroplets. Phys. Rev. A 83, 043202 (2011)

    Article  ADS  Google Scholar 

  231. Lawrence Livermore Lab. Laser Program Annual Report LCRL-ECC21-75, p. 64 (1976)

    Google Scholar 

  232. Lawrence Livermore Lab. Laser Program Annual Report UCRL-5C021-78, p. 21 (1979)

    Google Scholar 

  233. Ledingham, K.W.D., Spencer, I., McCanny, T., et al.: Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 84(5), 899–902 (2000)

    Article  ADS  Google Scholar 

  234. Ledingham, K.W.D., McKenna, P., Singhal, R.P.: Applications for nuclear phenomena generated by ultra-intense lasers. Science 300(5622), 1107–1111 (2003)

    Article  ADS  Google Scholar 

  235. Lee, K., Lee, J.Y., Park, S.H., et al.: Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse. Phys. Plasmas 18(1), 013101 (2011)

    Article  ADS  Google Scholar 

  236. Leemans, W.P., Nagler, B., Gonsalves, A.J., et al.: Gev electron beams from a centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006)

    Article  Google Scholar 

  237. Li, C.K., Séguin, F.H., Frenje, J.A., et al.: Observation of the decay dynamics and instabilities of megagauss field structures in laser-produced plasmas. Phys. Rev. Lett. 99, 015001 (2007)

    Article  ADS  Google Scholar 

  238. Li, H., Liu, J., Ni, G., et al.: Parameter optimization for fusion neutron yield from deuterium cluster explosion driven by intense femtosecond laser pulses. Phys. Rev. A 79, 043204 (2009)

    Article  ADS  Google Scholar 

  239. Li, Y., Lan, K., Lai, D., et al.: Radiation-temperature shock scaling of 1 ns laser-driven hohlraums. Phys. Plasmas 17(4), 042704 (2010)

    Article  ADS  Google Scholar 

  240. Liang, E.P., Wilks, S.C., Tabak, M.: Pair production by ultraintense lasers. Phys. Rev. Lett. 81(22), 4887–4890 (1998)

    Article  ADS  Google Scholar 

  241. Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)

    Google Scholar 

  242. Litz, M.S., Merkel, G., Pereira, N.R., et al.: Anomalous fluorescence line intensity in megavoltage bremsstrahlung. Phys. Plasmas 17(4), 043302 (2010)

    Article  ADS  Google Scholar 

  243. Liu, Y., Durand, M., Chen, S., et al.: Energy exchange between femtosecond laser filaments in air. Phys. Rev. Lett. 105, 055003 (2010)

    Article  ADS  Google Scholar 

  244. Loupias, B., Koenig, M., Falize, E., et al.: Supersonic-jet experiments using a high-energy laser. Phys. Rev. Lett. 99, 265001 (2007)

    Article  ADS  Google Scholar 

  245. Lu, H.Y., Liu, J.S., Wang, C., et al.: Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields. Phys. Rev. A 80, 051201 (2009)

    Article  ADS  Google Scholar 

  246. Magill, J., Schwoerer, H., Ewald, F., et al.: Laser transmutation of iodine-129. Appl. Phys. B 77(4), 387–390 (2003)

    Article  ADS  Google Scholar 

  247. Maine, P., Mourou, G.: Amplification of 1-nsec pulses in Nd:glass followed by compression to 1 psec. Opt. Lett. 13(3), 467–469 (1988)

    Article  ADS  Google Scholar 

  248. Maine, P., Strickland, D., Bado, P., et al.: Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24(2), 398–403 (1988)

    Article  ADS  Google Scholar 

  249. Malka, V., Fritzler, S., Lefebvre, E., et al.: Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002)

    Article  ADS  Google Scholar 

  250. Malka, V., Faure, J., Gauduel, Y.A., et al.: Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4(06), 447–453 (2008)

    Article  Google Scholar 

  251. Malone, R.C., McCrory, R.L., Morse, R.L.: Indications of strongly flux-limited electron thermal conduction in laser-target experiments. Phys. Rev. Lett. 34, 721–724 (1975)

    Article  ADS  Google Scholar 

  252. Mancic, A., Robiche, J., Antici, P., et al.: Isochoric heating of solids by laser-accelerated protons: experimental characterization and self-consistent hydrodynamic modeling. High Energy Density Phys. 6(1), 21–28 (2010)

    Article  ADS  Google Scholar 

  253. Manenkov, A.A.: Self-focusing of laser pulses: current state and future prospects. Phys. Usp. 54(1), 100–104 (2011)

    Article  ADS  Google Scholar 

  254. March, S.P. (ed.): Los Alamos Sci. Lab. Shock Wave Data. University of California Press, Berkeley (1980)

    Google Scholar 

  255. Martins, S.F., Fonseca, R.A., Lu, W., et al.: Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nat. Phys. 6(04), 311–316 (2010)

    Article  Google Scholar 

  256. Mason, R.J.: Apparent and real thermal inhibition in laser-produced plasmas. Phys. Rev. Lett. 47, 652–656 (1981)

    Article  ADS  Google Scholar 

  257. McGuffey, C., Thomas, A.G.R., Schumaker, W., et al.: Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010)

    Article  ADS  Google Scholar 

  258. McKenna, P., Ledingham, K.W., Shimizu, S., et al.: Broad energy spectrum of laser-accelerated protons for spallation-related physics. Phys. Rev. Lett. 94(8), 084801 (2005)

    Article  ADS  Google Scholar 

  259. McMahon, S.J., Kavanagh, A.P., Watanabe, H., et al.: Characterization and parametrization in terms of atomic number of X-ray emission from K-shell filling during ion-surface interactions. Phys. Rev. A 83, 022901 (2011)

    Article  ADS  Google Scholar 

  260. Mcpherson, A., Thompson, B.D., Borisov, A.B., et al.: Multiphoton-induced X-ray-emission at 4–5 keV from Xe atoms with multiple core vacancies. Nature 370(6491), 631–634 (1994)

    Article  ADS  Google Scholar 

  261. McWilliams, R.S., Eggert, J.H., Hicks, D.G., et al.: Strength effects in diamond under shock compression from 0.1 to 1 tpa. Phys. Rev. B 81, 014111 (2010)

    Google Scholar 

  262. Mead, W.C., Haas, R.A., Kruer, W.L., et al.: Observation and simulation of effects on parylene disks irradiated at high intensities with a 1.06-μm laser. Phys. Rev. Lett. 37, 489–492 (1976)

    Google Scholar 

  263. Meyer-ter Vehn, J.: From laser fusion to laser accelerators: basic studies into high power laser plasmas. Plasma Phys. Controlled Fusion 51(12), 124001 (2009)

    Article  ADS  Google Scholar 

  264. Milchberg, H.M., Kim, K.Y., Kumarappan, V., et al.: Clustered gases as a medium for efficient plasma waveguide generation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1840), 647–661 (2006)

    Article  ADS  Google Scholar 

  265. Mima, K., Ohsuga, T., Takabe, H., et al.: Wakeless triple-soliton accelerator. Phys. Rev. Lett. 57(12), 1421–1424 (1986)

    Article  ADS  Google Scholar 

  266. Mishin, Y., Farkas, D., Mehl, M.J., Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999)

    Article  ADS  Google Scholar 

  267. Mitchell, A.C., Nellis, W.J.: Shock compression of aluminum, copper, and tantalum. J. Appl. Phys. 52(5), 3363–3374 (1981)

    Article  ADS  Google Scholar 

  268. Moore, D.S., Gahagan, K.T., Reho, J.H., et al.: Ultrafast nonlinear optical method for generation of planar shocks. Appl. Phys Lett. 78(1), 40–42 (2001)

    Article  ADS  Google Scholar 

  269. Moribayashi, K., Sasaki, A., Tajima, T.: Ultrafast X-ray processes with hollow atoms. Phys. Rev. A 58, 2007–2015 (1998)

    Article  ADS  Google Scholar 

  270. Moshe, E., Dekel, E., Henis, Z., Eliezer, S.: Development of an optically recording velocity interferometer system for laser induced shock waves measurements. Appl. Phys. Lett. 69(10), 1379–1381 (1996)

    Article  ADS  Google Scholar 

  271. Mourou, G., Tajima, T.: More intense, shorter pulses. Science 331(6013), 41–42 (2011)

    Article  ADS  Google Scholar 

  272. Mourou, G.A., Barry, C.P.J., Perry, M.D.: Ultrahigh-intensity lasers: physics of the extreme on a tabletop. Phys. Today 51(1), 22–28 (1998)

    Article  ADS  Google Scholar 

  273. Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006)

    Article  Google Scholar 

  274. Nagler, B., Zastrau, U., Faustlin, R.R., et al.: Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys. 5(9), 693–696 (2009)

    Article  Google Scholar 

  275. Najmudin, Z., Walton, B.R., Mangles, S.P.D., et al.: Measurements of magnetic fields generated in underdense plasmas by intense lasers. AIP Conf. Proc. 827(1), 53–64 (2006)

    Article  ADS  Google Scholar 

  276. Nakamura, T., Fukuda, Y., Yogo, A., et al.: Coulomb implosion mechanism of negative ion acceleration in laser plasmas. Phys. Lett. A 373(30), 2584–2587 (2009)

    Article  ADS  MATH  Google Scholar 

  277. Nakamura, T., Fukuda, Y., Yogo, A., et al.: High energy negative ion generation by Coulomb implosion mechanism. Phys. Plasmas 16(11), 113106 (2009)

    Article  ADS  Google Scholar 

  278. Nakamura, T., Bulanov, S.V., Esirkepov, T.Z., Kando, M.: High-energy ions from near-critical density plasmas via magnetic vortex acceleration. Phys. Rev. Lett. 105, 135002 (2010)

    Article  ADS  Google Scholar 

  279. Nakamura, T., Koga, J.K., Esirkepov, T.Z., et al.: High-power γ-ray flash generation in ultraintense laser-plasma interactions. Phys. Rev. Lett. 108, 195001 (2012)

    Article  ADS  Google Scholar 

  280. Nakatsutsumi, M., Marques, J.R., Antici, P., et al.: High-power laser delocalization in plasmas leading to long-range beam merging. Nat. Phys. 6(10), 1010–1016 (2010)

    Article  Google Scholar 

  281. Narozhny, N.B., Bulanov, S.S., Mur, V.D., Popov, V.S.: e+e – pair production by a focused laser pulse in vacuum. Phys. Lett. A 330(1–2), 1–6 (2004)

    Google Scholar 

  282. Naseri, N., Bychenkov, V.Y., Rozmus, W.: Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas 17(8), 083109 (2010)

    Article  ADS  Google Scholar 

  283. National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)

    Google Scholar 

  284. Nellis, W.J.: Shock compression of hydrogen and other small molecules. In: Chiarotti, G.L., Hemley, R.J., Bernasconi, M., Ulivi, L. (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 607. IOS Press, Amsterdam (2002)

    Google Scholar 

  285. Nilson, P.M., Mangles, S.P.D., Willingale, L., et al.: Generation of ultrahigh-velocity ionizing shocks with petawatt-class laser pulses. Phys. Rev. Lett. 103, 255001 (2009)

    Article  ADS  Google Scholar 

  286. Nomura, Y., Hörlein, R., Tzallas, P., et al.: Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nat. Phys. 5(02), 124–128 (2009)

    Article  Google Scholar 

  287. Norman, G.E., Stegailov, V.V.: Homogeneous nucleation in a superheated crystal. Molecular-dynamic simulation. Dokl. Phys. 47(9), 667 (2002)

    Google Scholar 

  288. Norman, G.E., Skobelev, I.Y., Stegailov, V.V.: Excited states of warm dense matter. Contrib. Plasma Phys. 51(5), 411–418 (2011)

    Article  ADS  Google Scholar 

  289. Norman, G.E., Starikov, S.V., Stegailov, V.V.: Atomistic simulation of laser ablation of gold: effect of pressure relaxation. J. Exp. Theor. Phys. 114(5), 792 (2012)

    Article  ADS  Google Scholar 

  290. Norreys, P.A.: Laser-driven particle acceleration. Nat. Photonics 3(8), 423–425 (2009)

    Article  ADS  Google Scholar 

  291. Ogura, K., Shizuma, T., Hayakawa, T., et al.: Proton-induced nuclear reactions using compact high-contrast high-intensity laser. Appl. Phys. Express 2(6), 066001 (2009)

    Article  ADS  Google Scholar 

  292. Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [English Transl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]

    Google Scholar 

  293. Pak, A., Marsh, K.A., Martins, S.F., et al.: Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010)

    Article  ADS  Google Scholar 

  294. Parker, L.: Quantized fields and particle creation in expanding universes. I. Phys. Rev. 183(5), 1057–1068 (1969)

    Article  ADS  MATH  Google Scholar 

  295. Petrov, Y.V., Zhakhovskii, V.V., Inogamov, N.A., et al.: Equation of state of matter irradiated by short laser pulse and geometry of spalled cupola. In: Proc. SPIE 7005, High-Power Laser Ablation VII, pp. 70051W–70051W–12 (2008)

    Google Scholar 

  296. PHELIX, http://www.gsi.de/forschung/pp/phelix/index_e.html

  297. Pikuz, T.A., Faenov, A.Y., Gasilov, S.V., et al.: Propagation-based phase-contrast enhancement of nanostructure images using a debris-free femtosecond-laser-driven cluster-based plasma soft X-ray source and an LiF crystal detector. Appl. Opt. 48(32), 6271–6276 (2009)

    Article  ADS  Google Scholar 

  298. Pirozhkov, A.S., Kando, M., Esirkepov, T.Z., et al.: Soft-x-ray harmonic Comb from relativistic electron spikes. Phys. Rev. Lett. 108, 135004 (2012)

    Article  ADS  Google Scholar 

  299. Piskarskas, A., Stabinis, A., Yankauskas, A.: Phase phenomena in parametric amplifiers and generators of ultrashort light pulses. Phys. Usp. 29(9), 869–879 (1986)

    Article  ADS  Google Scholar 

  300. Povarnitsyn, M.E., Itina, T.E., Sentis, M., et al.: Material decomposition mechanisms in femtosecond laser interactions with metals. Phys. Rev. B 75, 235414 (2007)

    Article  ADS  Google Scholar 

  301. Povarnitsyn, M.E., Khishchenko, K.V., Levashov, P.R.: Phase transitions in femtosecond laser ablation. Appl. Surf. Sci. 255(10), 5120–5124 (2009)

    Article  ADS  Google Scholar 

  302. Price, R.H., Rosen, M.D., Banner, D.L.: In: Nellis, W.J. Seaman, L. Graham, R.A. (eds.) Shock Waves in Condensed Matter-1981, p. 155. American Institute of Physics, New York (1982)

    Google Scholar 

  303. Prokhorov, A.M., Anisimov, S.I., Pashinin, P.P.: Laser thermonuclear fusion. Phys. Usp. 19(7), 547–560 (1976)

    Article  ADS  Google Scholar 

  304. Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003)

    Article  ADS  Google Scholar 

  305. Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74(4–5), 355–361 (2002)

    Article  ADS  Google Scholar 

  306. Quéré, F., Thaury, C., Monot, P., et al.: Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006)

    Article  ADS  Google Scholar 

  307. Raven, A., Willi, O., Rumsby, P.T.: Megagauss magnetic field profiles in laser-produced plasmas. Phys. Rev. Lett. 41, 554–557 (1978)

    Article  ADS  Google Scholar 

  308. Reiss, H.R.: Unsuitability of the Keldysh parameter for laser fields. Phys. Rev. A 82, 023418 (2010)

    Article  ADS  Google Scholar 

  309. Rohringer, N., Ryan, D., London, R.A., et al.: Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012)

    Article  ADS  Google Scholar 

  310. Rohwetter, P., Kasparian, J., Stelmaszczyk, K., et al.: Laser-induced water condensation in air. Nat. Photonics 4(7), 451–456 (2010)

    Article  ADS  Google Scholar 

  311. Romagnani, L., Bigongiari, A., Kar, S., et al.: Observation of magnetized soliton remnants in the wake of intense laser pulse propagation through plasmas. Phys. Rev. Lett. 105, 175002 (2010)

    Article  ADS  Google Scholar 

  312. Rosmej, F.: Exotic states of high density matter driven by intense XUV/X-ray free electron lasers. In: Varro, S. (ed.) Free Electron Laser, chap. 8, pp. 187–212. InTech (2012)

    Google Scholar 

  313. Rosmej, F.B., Lee, R.W.: Hollow ion emission driven by pulsed intense X-ray fields. Europhys. Lett. 77(2), 24001 (2007)

    Article  ADS  Google Scholar 

  314. Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., et al.: Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas. J. Phys. B Atomic Mol. Opt. Phys. 32(5), L107 (1999)

    Article  ADS  Google Scholar 

  315. Rosmej, F.B., Lee, R.W., Riley, D., et al.: Warm dense matter and strongly coupled plasmas created by intense heavy ion beams and XUV-free electron laser: an overview of spectroscopic methods. J. Phys. Conf. Ser. 72(1), 012007 (2007)

    Article  ADS  Google Scholar 

  316. Ross, J.S., Glenzer, S.H., Amendt, P., et al.: Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks. Phys. Plasmas 19(5), 056501 (2012)

    Article  ADS  Google Scholar 

  317. Roth, M., Alber, I., Bagnoud, V., et al.: Proton acceleration experiments and warm dense matter research using high power lasers. Plasma Phys. Controlled Fusion 51(12), 124039 (2009)

    Article  ADS  Google Scholar 

  318. Rubakov, V.A.: Multidimensional models of particle physics. Phys. Usp. 46(2), 211 (2003)

    Article  ADS  Google Scholar 

  319. Rubakov, V.A., Shaposhnikov, M.E.: Do we live inside a domain wall? Phys. Lett. B 125(2–3), 136–138 (1983)

    Article  ADS  Google Scholar 

  320. Rubenchik, A.M., Fedoruk, M.P., Turitsyn, S.K.: Laser beam self-focusing in the atmosphere. Phys. Rev. Lett. 102, 233902 (2009)

    Article  ADS  Google Scholar 

  321. Rusek, M., Lagadec, H., Blenski, T.: Cluster explosion in an intense laser pulse: Thomas-Fermi model. Phys. Rev. A 63, 013203 (2000)

    Article  ADS  Google Scholar 

  322. Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas 8(5), 1804–1816 (2001)

    Article  ADS  Google Scholar 

  323. Rzadkiewicz, J., Gojska, A., Rosmej, O., et al.: Interpretation of the Si K α x-ray spectra accompanying the stopping of swift Ca ions in low-density SiO2 aerogel. Phys. Rev. A 82, 012703 (2010)

    Article  ADS  Google Scholar 

  324. Saalmann, U., Siedschlag, C., Rost, J.M.: Mechanisms of cluster ionization in strong laser pulses. J. Phys. B Atomic Mol. Opt. Phys. 39(4) (2006)

    Google Scholar 

  325. Sagdeev, R.Z.: Cooperative phenomena and shock waves in collisionless plasmas (Collective processes in rarefied plasma, analyzing nonlinear undamped oscillations and shock waves). In: Leontovich, M.A. (ed.) Problems in Plasma Theory. Reviews of Plasma Physics, vol. 4, pp. 23–91. Consultants Bureau, New York (1966)

    Google Scholar 

  326. Sakabe, S., Shimizu, S., Hashida, M., et al.: Generation of high-energy protons from the coulomb explosion of hydrogen clusters by intense femtosecond laser pulses. Phys. Rev. A 69, 023203 (2004)

    Article  ADS  Google Scholar 

  327. Sangster, T.C., Goncharov, V.N., Betti, R., et al.: Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega. Phys. Plasmas 17(5), 056312 (2010)

    Article  ADS  Google Scholar 

  328. Sano, T., Ozaki, N., Sakaiya, T., et al.: Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa. Phys. Rev. B 83, 054117 (2011)

    Article  ADS  Google Scholar 

  329. Sarkisov, G.S., Bychenkov, V.Y., Novikov, V.N., et al.: Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59(6), 7042–7054 (1999)

    Article  ADS  Google Scholar 

  330. Sarri, G., Cecchetti, C.A., Jung, R., et al.: Spatially resolved measurements of laser filamentation in long scale length underdense plasmas with and without beam smoothing. Phys. Rev. Lett. 106, 095001 (2011)

    Article  ADS  Google Scholar 

  331. Sarri, G., Kar, S., Romagnani, L., et al.: Observation of plasma density dependence of electromagnetic soliton excitation by an intense laser pulse. Phys. Plasmas 18(8), 080704 (2011)

    Article  ADS  Google Scholar 

  332. Sasaki, A., Kishimoto, Y., Takahashi, E., et al.: Percolation simulation of laser-guided electrical discharges. Phys. Rev. Lett. 105, 075004 (2010)

    Article  ADS  Google Scholar 

  333. Schenkel, T., Hamza, A., Barnes, A., Schneider, D.: Interaction of slow, very highly charged ions with surfaces. Prog. Surf. Sci. 61(2–4), 23–84 (1999)

    Article  ADS  Google Scholar 

  334. Schlenvoigt, H.P., Haupt, K., Debus, A., et al.: A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4(2), 130–133 (2008)

    Article  Google Scholar 

  335. Schutzhold, R., Schaller, G., Habs, D.: Signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields. Phys. Rev. Lett. 97(12), 121302 (2006)

    Article  ADS  Google Scholar 

  336. Schwoerer, H., Ewald, F., Sauerbrey, R., et al.: Fission of actinides using a tabletop laser. Europhys. Lett. 91(1), 47–52 (2003)

    Article  ADS  Google Scholar 

  337. Schwoerer, H., Magill, J., Beleites, B. (eds.): Lasers and Nuclei: Applications of Ultrahigh Intensity Lasers in Nuclear Science. Lecture Notes in Physics, vol. 694. Springer, Berlin (2006)

    Google Scholar 

  338. Sedov, L.I.: Metody podobiya i razmernosti v mekhanike (Similarity and Dimensional Methods in Mechanics). Nauka, Moscow (1966). [Transl. of 4th Russ. ed. Academic Press, New York (1959)]

    Google Scholar 

  339. Seipt, D., Kämpfer, B.: Nonlinear Compton scattering of ultrashort intense laser pulses. Phys. Rev. A 83, 022101 (2011)

    Article  ADS  Google Scholar 

  340. Seres, J., Seres, E., Hochhaus, D., et al.: Laser-driven amplification of soft X-rays by parametric stimulated emission in neutral gases. Nat. Phys. 2(06), 455–461 (2010)

    Article  Google Scholar 

  341. Seres, J., Seres, E., Verhoef, A.J., et al.: Laser technology: source of coherent kiloelectronvolt X-rays. Nature 433(02), 596 (2005)

    Article  ADS  Google Scholar 

  342. Skripov, V.P.: Metastabil’naya zhidkost’ (Metastable Fluid). Nauka, Moscow (1972)

    Google Scholar 

  343. Smirnov, B.M.: Negative Ions. McGraw-Hill, New York (1992)

    Google Scholar 

  344. Smirnov, M.B., Skobelev, I.Y., Magunov, A.I., et al.: Microdroplet evolution induced by a laser pulse. J. Exp. Theor. Phys. 98(6), 1123 (2004)

    Article  ADS  Google Scholar 

  345. Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., et al.: Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224–227 (1998)

    Article  ADS  Google Scholar 

  346. Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985)

    Article  ADS  Google Scholar 

  347. Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985)

    Article  ADS  Google Scholar 

  348. Suckewer, S., Jaegle, P.: X-Ray laser: past, present, and future. Laser Phys. Lett. 6(6), 411–436 (2009)

    Article  Google Scholar 

  349. Sudan, R.N.: Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 70(20), 3075–3078 (1993)

    Article  ADS  Google Scholar 

  350. Sugiyama, K., Fujii, T., Miki, M., et al.: Laser-filament-induced corona discharges and remote measurements of electric fields. Opt. Lett. 34(19), 2964–2966 (2009)

    Article  ADS  Google Scholar 

  351. Solem, L.C., Veeser, L.R.: Los Alamos Sci. Lab. Report LASL-LA-96 9667-MS (1977)

    Google Scholar 

  352. Taguchi, T., Antonsen, T.M., Palastro, J., et al.: Particle in cell analysis of a laser-cluster interaction including collision and ionization processes. Opt. Express 18(3), 2389–2405 (2010)

    Article  ADS  Google Scholar 

  353. Tajima, T.: Summary of Working Group 7 on “Exotic acceleration schemes”. AIP Conf. Proc. 569(1), 77–81 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  354. Tajima, T., Kishimoto, Y., Downer, M.C.: Optical properties of cluster plasma. Phys. Plasmas 6(10), 3759–3764 (1999)

    Article  ADS  Google Scholar 

  355. Tan, K.O., James, D.J., Nilson, J.A., et al.: Compact 0.1 tw co2 laser system. Rev. Sci. Instrum. 51(6), 776–780 (1980)

    Google Scholar 

  356. Tanaka, K.A., Yabuuchi, T., Sato, T., et al.: Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76(1), 013507 (2005)

    Article  ADS  Google Scholar 

  357. Tatarakis, M., Gopal, A., Watts, I., et al.: Measurements of ultrastrong magnetic fields during relativistic laser–plasma interactions. Phys. Plasmas 9(5), 2244–2250 (2002)

    Article  ADS  Google Scholar 

  358. Telnov, V.: Photon collider at TESLA. Nucl. Instrum. Methods Phys. Res. A 472(1–2), 43–60 (2001)

    Article  ADS  Google Scholar 

  359. Temnov, V.V., Sokolowski-Tinten, K., Zhou, P., von der Linde, D.: Ultrafast imaging interferometry at femtosecond-laser-excited surfaces. J. Opt. Soc. Am. B 23(9), 1954–1964 (2006)

    Article  ADS  Google Scholar 

  360. Teubner, U., Eidmann, K., Wagner, U., et al.: Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses. Phys. Rev. Lett. 92, 185001 (2004)

    Article  ADS  Google Scholar 

  361. Teubner, U., Gibbon, P.: High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445–479 (2009)

    Article  ADS  Google Scholar 

  362. Thoma M.H.: Field theoretic description of ultrarelativistic electron-positron plasmas. Rev. Mod. Phys. 81, 959 (2009)

    Article  ADS  Google Scholar 

  363. Thomas, A.G.R., Krushelnick, K.: Betatron X-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields. Phys. Plasmas 16(10), 103103 (2009)

    Article  ADS  Google Scholar 

  364. Toleikis, S., Fäustlin, R., Cao, L., et al.: Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures. High Energy Density Phys. 6(1), 15–20 (2010)

    Article  ADS  Google Scholar 

  365. Trainor, R.J., Graboske, H.G., et al.: Lawrence Livermore Lab. Preprint UCRL-52562 (1978)

    Google Scholar 

  366. Trainor, R.J., Shaner, J.W., Auerbach, J.M., Holmes, N.C.: Ultrahigh-pressure laser-driven shock-wave experiments in aluminum. Phys. Rev. Lett. 42, 1154–1157 (1979)

    Article  ADS  Google Scholar 

  367. Trainor, R.J., Holmes, N.C., More, R.M.: Lawrence Livermore Lab. Report UCRL-82429 (1979)

    Google Scholar 

  368. Trainor, R.J., Holmes, N.C., Anderson, R.A.: In: Nellis, W.J. Seaman, L. Graham, R.A. (eds.) Shock Waves in Condensed Matter-1981, p. 145. American Institute of Physics, New York (1982)

    Google Scholar 

  369. Trunin, R.F.: Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions. Phys. Usp. 37(11), 1123 (1994)

    Article  ADS  Google Scholar 

  370. Umstadter, D.: Photonuclear physics: laser light splits atom. Nature 404(6775), 239 (2000)

    Article  Google Scholar 

  371. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870–892 (1976)

    Article  ADS  Google Scholar 

  372. Upadhyay, A.K., Inogamov, N.A., Rethfeld, B., Urbassek, H.M.: Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold. Phys. Rev. B 78, 045437 (2008)

    Article  ADS  Google Scholar 

  373. Urnov, A.M., Dubau, J., Faenov, A.Y., et al.: X-ray spectra of multiply-charged hollow ions in the emission from a femtosecond laser plasma. JETP Lett. 67(7), 489–494 (1998)

    Article  ADS  Google Scholar 

  374. Vacca, J.R. (ed.): The World’s 20 Greatest Unsolved Problems. Prentice Hall PTR, Englewood Cliffs (2004)

    Google Scholar 

  375. van Kessel, C.G.M., Sigel, R.: Observation of laser-driven shock waves in solid hydrogen. Phys. Rev. Lett. 33, 1020–1023 (1974)

    Article  ADS  Google Scholar 

  376. van Thiel, M. (ed.): Compendium of Shock Wave Data: Lawrence Livermore Lab. Report UCRL-50108 (1977)

    Google Scholar 

  377. Veeser, L.R., Solem, J.C.: Studies of laser-driven shock waves in aluminum. Phys. Rev. Lett. 40, 1391–1394 (1978)

    Article  ADS  Google Scholar 

  378. Veeser, L.R., Solem, J.C., Lieber, A.J.: Impedance-match experiments using laser-driven shock waves. Appl. Phys. Lett. 35(10), 761–763 (1979)

    Article  ADS  Google Scholar 

  379. Vinko, S.M., Ciricosta, O., Cho, B.I., et al.: Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59–62 (2012)

    Article  ADS  Google Scholar 

  380. Virovlyansky, A.L., Makarov, D.V., Prants, S.V.: Ray and wave chaos in underwater acoustic waveguides. Phys. Usp. 55(1), 18–46 (2012)

    Article  ADS  Google Scholar 

  381. Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., et al.: Shock compressibility of aluminum at p > 1 Gbar. JETP Lett. 39(2), 82 (1984)

    ADS  Google Scholar 

  382. Volpe, L., Batani, D., Vauzour, B., et al.: Proton radiography of laser-driven imploding target in cylindrical geometry. Phys. Plasmas 18(1), 012704 (2011)

    Article  ADS  Google Scholar 

  383. Wagner, U., Tatarakis, M., Gopal, A., et al.: Laboratory measurements of 0. 7 gg magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70(2), 026401 (2004)

    Google Scholar 

  384. Wang, X., Ischebeck, R., Muggli, P., et al.: Positron injection and acceleration on the wake driven by an electron beam in a foil-and-gas plasma. Phys. Rev. Lett. 101, 124801 (2008)

    Article  ADS  Google Scholar 

  385. Wang, W.P., Shen, B.F., Zhang, X.M., et al.: Efficient acceleration of monoenergetic proton beam by sharp front laser pulse. Phys. Plasmas 18(1), 013103 (2011)

    Article  ADS  Google Scholar 

  386. Weibel, E.S.: Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2(3), 83–84 (1959)

    Article  ADS  Google Scholar 

  387. Whitley, V.H., McGrane, S.D., Eakins, D.E., et al.: The elastic-plastic response of aluminum films to ultrafast laser-generated shocks. J. Appl. Phys. 109(1), 013505 (2011)

    Article  ADS  Google Scholar 

  388. Willingale, L., Thomas, A.G.R., Nilson, P.M., et al.: Fast advection of magnetic fields by hot electrons. Phys. Rev. Lett. 105, 095001 (2010)

    Article  ADS  Google Scholar 

  389. Wood, L.L., Killer, R.N., Nuckolls, J.H.: Lawrence Livermore Lab. Report UCRL-79610 (1977)

    Google Scholar 

  390. Yaakobi, B., Bristow, T.C.: Measurement of reduced thermal conduction in (layered) laser-target experiments. Phys. Rev. Lett. 38, 350–353 (1977)

    Article  ADS  Google Scholar 

  391. Yan, X.Q., Wu, H.C., Sheng, Z.M., et al.: Self-organizing GeV, Nanocoulomb, collimated proton beam from laser foil interaction at \(7 \times 10^{21}{\,}{\,}\boldsymbol{W}/\mathrm{cm}^{2}\). Phys. Rev. Lett. 103, 135001 (2009)

    Article  ADS  Google Scholar 

  392. Yanovsky, V., Chvykov, V., Kalinchenko, G., et al.: Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16(3), 2109–2114 (2008)

    Google Scholar 

  393. Young, L., Kanter, E.P., Krassig, B., et al.: Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466(07), 56–61 (2010)

    Article  ADS  Google Scholar 

  394. Zagar, T., Galy, J., Magill, J., Kellett, M.: Laser-generated nanosecond pulsed neutron sources: scaling from VULCAN to table-top. New J. Phys. 7, 253 (2005)

    Article  ADS  Google Scholar 

  395. Zamponi, F., Lübcke, A., Kämpfer, T., et al.: Directional bremsstrahlung from a Ti laser-produced x-ray source at relativistic intensities in the 3˘12 keV range. Phys. Rev. Lett. 105, 085001 (2010)

    Article  ADS  Google Scholar 

  396. Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics). Vek 2, Fryazino (2006)

    Google Scholar 

  397. Zeldovich, Y.B., Popov, V.S.: Electronic structure of superheavy atoms. Sov. Phys. Usp. 14, 673 (1972)

    Article  ADS  Google Scholar 

  398. Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966). [English Transl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)]

    Google Scholar 

  399. Zhakhovskii, V.V., Nishihara, K., Anisimov, S.I., Inogamov, N.A.: Molecular-dynamics simulation of rarefaction waves in media that can undergo phase transitions. JETP Lett. 71(4), 167–172 (2000)

    Article  ADS  Google Scholar 

  400. Zhakhovskii, V., Inogamov, N., Nishihara, K.: Laser ablation and spallation of crystalline aluminum simulated by molecular dynamics. J. Phys. Conf. Ser. 112(4), 042080 (2008)

    Article  ADS  Google Scholar 

  401. Zhakhovskii, V.V., Inogamov, N.A., Nishihara, K.: New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Lett. 87(8), 423–427 (2008)

    Article  ADS  Google Scholar 

  402. Zhakhovskii, V.V., Inogamov, N.A., Petrov, Y.V., et al.: Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl. Surf. Sci. 255(24), 9592–9596 (2009)

    Article  ADS  Google Scholar 

  403. Zhang, L., Chen, L.M., Yuan, D.W., et al.: Enhanced Kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Opt. Express 19(25), 25812–25822 (2011)

    Article  ADS  Google Scholar 

  404. Zhang, L., Chen, L.M., Wang, W.M., et al.: Electron acceleration via high contrast laser interacting with submicron clusters. Appl. Phys. Lett. 100(1), 014104 (2012)

    Article  ADS  Google Scholar 

  405. Zhidkov, A.G., Sasaki, A., Fukumoto, I., et al.: Pulse duration effect on the distribution of energetic particles produced by intense femtosecond laser pulses irradiating solids. Phys. Plasmas 8(8), 3718–3723 (2001)

    Article  ADS  Google Scholar 

  406. Zhidkov, A., Koga, J., Sasaki, A., Uesaka, M.: Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma. Phys. Rev. Lett. 88, 185002 (2002)

    Article  ADS  Google Scholar 

  407. Zhidkov, A., Esirkepov, T., Fujii, T., et al.: Characteristics of light reflected from a dense ionization wave with a tunable velocity. Phys. Rev. Lett. 103, 215003 (2009)

    Article  ADS  Google Scholar 

  408. Zhidkov, A.G., Pikuz, S.A., Faenov, A.Y., et al.: Generation of hard X-rays by femtosecond laser pulse interaction with solid targets in atmosphere. Opt. Lett. 37(5), 884–886 (2012)

    Article  ADS  Google Scholar 

  409. Zhigilei, L.V., Lin, Z., Ivanov, D.S.: Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion\(^{\dag }\). J. Phys. Chem. C 113(27), 11892–11906 (2009)

    Article  Google Scholar 

  410. Zhilyaev, P.A., Kuksin, A.Y., Stegailov, V.V., Yanilkin, A.V.: Influence of plastic deformation on fracture of an aluminum single crystal under shock-wave loading. Phys. Solid State 52(8), 1619 (2010)

    Article  ADS  MATH  Google Scholar 

  411. Zigler, A., Palchan, T., Bruner, N., et al.: 5.5–7.5 MeV proton generation by a moderate-intensity ultrashort-pulse laser interaction with H2O nanowire targets. Phys. Rev. Lett. 106, 134801 (2011)

    Google Scholar 

  412. Zimmerman, G.B., Kruer, W.L.: Numerical simulation of laser-initiated fusion. Comm. Plasma Phys. Controlled Fusion 2, 51 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fortov, V.E. (2016). High-Power Lasers in High-Energy-Density Physics. In: Extreme States of Matter. Springer Series in Materials Science, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-319-18953-6_5

Download citation

Publish with us

Policies and ethics