Advertisement

High Energy Densities in Laboratories

  • Vladimir E. Fortov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 216)

Abstract

In this chapter we discuss the capabilities of the modern experimental physics of high energy densities to produce extreme states of matter in laboratory conditions. At the outset we briefly dwell on the main lines of investigations in this field. We next study at greater length the characteristics of modern experimental facilities used for generating high energy densities: diamond anvils, powder-charge and light-gas projectile devices—“guns”, explosive generators of intense shock waves, electric explosion devices, magnetic cumulation generators, lasers, and high-current generators of powerful electric current pulses. Experiments using laser facilities, elementary particle accelerators, and underground nuclear explosions are outlined in more detail in the next chapters.

Keywords

Shock Wave High Energy Density High Explosive Fermi Model Nonideal Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Al’tshuler, L.V.: Use of shock waves in high-pressure physics. Sov. Phys. – Usp. 8(1), 52–91 (1965)Google Scholar
  2. 2.
    Al’tshuler, L.V., Kalitkin, N.N., Kuz’mina, L.V., Chekin, B.S.: Shock adiabats for ultrahigh pressures. J. Exp. Theor. Phys. 45, 167 (1977)ADSGoogle Scholar
  3. 3.
    Al’tshuler, L.V., Trunin, R.F., Krupnikov, K.K., Panov, N.V.: Explosive laboratory devices for shock wave compression studies. Phys. Usp. 39(5), 539 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Al’tshuler, L.V., Trunin, R.F., Urlin, V.D., et al.: Development of dynamic high-pressure techniques in Russia. Phys. Usp. 42(3), 261 (1999)Google Scholar
  5. 5.
    Al’tshuler, L.V., Krupnikov, K.K., Fortov, V.E., Funtikov, A.I.: Origins of megabar pressure physics. Herald Russ. Acad. Sci. 74(6), 613 (2004)Google Scholar
  6. 6.
    Anan’ev, S., Bakshaev, Y., Blinov, P., et al.: Investigations of the mega-ampere multiwire X pinch. JETP Lett. 87(7), 364–370 (2008)Google Scholar
  7. 7.
    Andre, M.: Conceptual design of the French LMJ laser. In: First SPIE International Conference on Solid State Lasers for Application to ICF, Monterey, CA, p. 39 (1999)Google Scholar
  8. 8.
    Andreev, V.F., Karaev, J.A., Umrihin, N.M., et al. (eds.): Uslovija generacii impul’snogo nejtronnogo izluchenija pri vzryvnom obzhatii termojadernoj plazmy. IAE-5519/7 (Conditions of Generation of Pulse Neutron Radiation by Explosive Compression of Thermonuclear Plasma). IAE, Moscow (1992)Google Scholar
  9. 9.
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. – Usp. 27(3), 181–205 (1984)Google Scholar
  10. 10.
    Arinin, V.A., Buyko, A.M., Burenkov, O.M., et al.: A series of joint VNIIEF/LANL Explosive Magnetic Experiments RHSR-0,1,2 on Radiographic Study of Perturbations growth at a Copper Liner Boundary with Polyethylene or Water. In: von Ortenberg, M. (ed.) Megagauss-X: Proceedings of the Tenth International Conference on Megagauss Magnetic Field Generation and Related Topics, Berlin, pp. 348–354 (2005)Google Scholar
  11. 11.
    Aryutkin, M.Y., et al.: In: The 13th International Conference on Megagauss Magnetic Field Generation and Related Topics, Suzhou (2010)Google Scholar
  12. 12.
    Ashkroft, N.A.: Condensed matter at higher densities. In: Chiarotti, G.L., Hemley, R.J., Bernasconi, M., Ulivi, L. (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 151. IOS Press, Amsterdam (2002)Google Scholar
  13. 13.
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  14. 14.
    Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 36(5), 337–364 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics research during nuclear explosions. Phys. Usp. 49(4), 432 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Azizov, E.A., Alexandrov, V.V., Alikhanov, S.G., et al.: Pulse power system development for megajoule X-ray facility BAIKAL. AIP Conf. Proc. 651(1), 29–32 (2002)Google Scholar
  17. 17.
    Bazanov, O.V., Bespalov, V.E., Zharkov, A.P., et al.: Irregular reflection of conically converging shock waves in plexiglas and copper. High Temp. 23(5), 781 (1986)Google Scholar
  18. 18.
    Belov, S.I., Boriskov, G.V., Bykov, A.I., et al.: Shock compression of solid deuterium. JETP Lett. 76(7), 433–435 (2002)Google Scholar
  19. 19.
    Betti, R., Anderson, K., Boehly, T.R., et al.: Progress in hydrodynamics theory and experiments for direct-drive and fast ignition inertial confinement fusion. Plasma Phys. Control. Fusion 48(12B), B153–B163 (2006)Google Scholar
  20. 20.
    Betti, R., Chang, P.Y., Spears, B.K., et al.: Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement. Phys. Plasmas 17(5), 058102 (2010)Google Scholar
  21. 21.
    Bland, S.N., Lebedev, S.V., Chittenden, J.P., et al.: Implosion and stagnation of wire array Z pinches. Phys. Plasmas 14(5), 056315 (2007)Google Scholar
  22. 22.
    Boehler, R.: Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature 363(6429), 534–536 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Boehler, R., Forzandonea, D.: The laser heated diamond cell: high P–T phase diagrams. In: Chiarotti, G.L., Hemley, R.J., Bernasconi, M., Ulivi, L. (eds.) High Pressure Phenomena, pp. 55–66. IOS Press, Amsterdam (2002)Google Scholar
  24. 24.
    Boriskov, G.V., Bykov, A.I., Il’kaev, R.I., et al.: Shock compression of liquid deuterium up to 109 GPa. Phys. Rev. B 71(9), 092104 (2005)Google Scholar
  25. 25.
    Boriskov, G.V., Bykov, A.I., Egorov, N.I., et al.: In: Garanin, S.G. (ed.) Xth Khariton’s Topical Scientific Readings (in Russian), p. 281. RFYaTs-VNIIEF (2006)Google Scholar
  26. 26.
    Boriskov, G.V., Bykov, A.I., Egorov, N.I., et al.: Building zero isotherm of hydrogen isotopes taking into account experimental results of isentropic compression up to pressures of several megabar. J. Phys.: Conf. Ser. 121(8), 072001 (2008)Google Scholar
  27. 27.
    Boriskov, G.V., Bykov, A.I., Egorov, N.I., et al.: In: Mikhailov, A.S. (ed.) XIth Khariton’s Topical Scientific Readings (in Russian), p. 771. RFYaTs-VNIIEF (2009)Google Scholar
  28. 28.
    Boriskov, G.V., Bykov, A.I., Dolotenko, M.I., et al.: Research in ultrahigh magnetic field physics. Phys. Usp. 54(4), 421–427 (2011)Google Scholar
  29. 29.
    Boriskov, G.V., Bykov, A.I., Egorov, N.I., et al.: Isentropic compression of substances using ultra-high magnetic field: zero isotherms of protium and deuterium in pressure range up to \(\sim 5\) Mbar. Contrib. Plasma Phys. 51(4), 339–348 (2011)Google Scholar
  30. 30.
    Boyko, B., Bykov, A., et al.: More than 20 MG magnetic field generation in the cascade magnetocumulative MC-1 generator. In: Schneider-Muntau, H. (ed.) Proceedings VIIIth International Conference Megagauss Magnetic Field Generation and Related Topics, FL, 18–23 Oct 1998, p. 61. World Sci, Tallahassee (2004)Google Scholar
  31. 31.
    Brodskii, A.Y., et al.: Sov. Phys. Dokl. 35, 876 (1990)Google Scholar
  32. 32.
    Bunkenberg, J., Boles, J., Brown, D., et al.: The omega high-power phosphate-glass system: design and performance. IEEE J. Quantum Electron. 17(9), 1620–1628 (1981)Google Scholar
  33. 33.
    Buyko, A.M., et al.: In: Titov, V.M., Shvetsov, G.A. (eds.) Megagauss Fields and Pulsed Power Systems, p. 743. Nova Science Publishers, Commack, NY (1990)Google Scholar
  34. 34.
    Bykov, A.I., et al.: Sverkhprovodimost’. Fiz. Khim. Tekh. 8(1), 37 (1995)Google Scholar
  35. 35.
    Bykov, A.I., Dolotenko, M.I., Kolokol’chikov, N.P., et al.: The cascade magnetocumulative generator of ultrahigh magnetic fields — a reliable tool for megagauss physics. Physica B: Condens. Matter 216(3–4), 215–217 (1996)Google Scholar
  36. 36.
    Calderola, P., Knopfel, H. (eds.): Physics of High Energy Density. Academic, New York (1971)Google Scholar
  37. 37.
    Cavailler, C.: Inertial fusion with the LMJ. Plasma Phys. Control. Fusion 47(12B), B389–B403 (2005)CrossRefGoogle Scholar
  38. 38.
    Chang, P., Betti, R., Spears, B.K., et al.: Generalized measurable ignition criterion for inertial confinement fusion. Phys. Rev. Lett. 104, 135002 (2010)Google Scholar
  39. 39.
    Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, vol. 1, 2nd edn. Springer, New York (1984)Google Scholar
  40. 40.
    Chernyshev, V.K., et al.: Vopr. At. Nauki Tekh. Metod. Prog. Chisl. Resh. Zadach Mat. Fiz. 3(14), 30 (1983)Google Scholar
  41. 41.
    Chernyshev, V.K., Protasov, M.S., Shevtsov, V.A.: In: Titov, V.M., Shvetsov, G.A. (eds.) Sverkhsil’nye magnitnye polya. Fizika. Tekhnika. Primenenie (Ultrahigh Magnetic Fields: Physics, Techniques, Application): Trudy VII Mezhdunarodnoi Konferentsii po Generatsii Megagaussnykh Magnitnykh Polei i Rodstvennym Eksperimentam (Proceedings of VII International Conference on Megagauss Magnetic Field Generation and Related Experiments), p. 23. Nauka, Moscow (1984)Google Scholar
  42. 42.
    Chernyshev, V.K., et al.: In: Titov, V.M., Shvetsov, G.A. (eds.) Megagauss Fields and Pulsed Power Systems, p. 347. Nova Science Publishers, Commack, NY (1990)Google Scholar
  43. 43.
    Chernyshev, V.K., et al.: Vopr. At. Nauki Tekh. Mat. Model. Fiz. Protsessov 4, 33 (1992)Google Scholar
  44. 44.
    Chittenden, J.P., Ciardi, A., Jennings, C.A., et al.: Structural evolution and formation of high-pressure plasmas in X-pinches. Phys. Rev. Lett. 98(2), 025003 (2007)Google Scholar
  45. 45.
    Chuvatin, A.S., Kantsyrev, V.L., Rudakov, L.I., et al.: Operation of a load current multiplier on a nanosecond mega-ampere pulse forming line generator. Phys. Rev. ST Accel. Beams 13, 010401 (2010)Google Scholar
  46. 46.
    Collins, G.W., Da Silva, L.B., Celliers, P., et al.: Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Science 281(5380), 1178–1181 (1998)Google Scholar
  47. 47.
    Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience, New York (1948)zbMATHGoogle Scholar
  48. 48.
    Coverdale, C., Jones, B., Ampleford, D., et al.: K-shell X-ray sources at the Z accelerator. High Energy Density Phys. 6(2), 143–152 (2010)Google Scholar
  49. 49.
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006)Google Scholar
  50. 50.
    Da Silva, L.B., Celliers, P., Collins, G.W., et al.: Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys. Rev. Lett. 78(3), 483–486 (1997)Google Scholar
  51. 51.
    Demidov, V.A., Kazakov, S.A.: Helical magneto-cumulative generators for plasma focus powering. IEEE Trans. Plasma Sci. 38(8), 1758–1761 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Demidov, V.A., Selemir, V.D.: Explosive pulsed power for controlled fusion. In: Kiuttu, G.F., Reinovsky, R.E., Turchi, P.J. (eds.) Megagauss Magnetic Fields and High Energy Liner Technology: Proceedings of the 2006 International Conference on Megagauss Magnetic Field Generation and Related Topics and International Workshop on High Energy Liners & High Energy Density Applications, pp. 245–254 (2006)Google Scholar
  53. 53.
    Demidov, V.A., et al.: In: Titov, V.M., Shvetsov, G.A. (eds.) Megagauss Fields and Pulsed Power Systems, p. 351. Nova Science Publishers, Commack, NY (1990)Google Scholar
  54. 54.
    Ditmire, T., Springate, E., Tisch, J.W., et al.: Explosion of atomic clusters heated by high-intensity femtosecond laser pulses. Phys. Rev. A 57(1), 369–382 (1998)Google Scholar
  55. 55.
    Drake, R.P.: High-Energy-Density Physics. Springer, Berlin/Heidelberg (2006)Google Scholar
  56. 56.
    Dyabilin, K.S., et al.: An investigation of the thermal-properties of materials under the effect of a powerful pulse of soft X-radiation of Z-pinch plasma. High Temp. 34(3), 473 (1996)Google Scholar
  57. 57.
    Eggert, J., Brygoo, S., Loubeyre, P., et al.: Hugoniot data for helium in the ionization regime. Phys. Rev. Lett. 100, 124503 (2008)Google Scholar
  58. 58.
    Fan, Y., Zheng-Hong, L., Yi, Q., et al.: Spatially-resolved spectroscopic diagnosing of aluminum wire array z-pinch plasmas on qiangguang-i facility. Chin. Phys. B 19(7), 075204 (2010)Google Scholar
  59. 59.
    Faussurier, G., Blancard, C., Cossé, P., Renaudin, P.: Equation of state, transport coefficients, and stopping power of dense plasmas from the average-atom model self-consistent approach for astrophysical and laboratory plasmas. Phys. Plasmas 17(5), 052707 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    Florido, R., Mancini, R., Nagayama, T., et al.: Argon K-shell and bound-free emission from OMEGA direct-drive implosion cores. High Energy Density Phys. 6(1), 70–75 (2010)Google Scholar
  61. 61.
    Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma). Nauka, Moscow (2000)Google Scholar
  62. 62.
    Fortov, V.E. (ed.): Vzryvnye generatory moshchnykh impul’sov elektricheskogo toka (Explosion Generators of High-Power Pulses of Electric Current). Nauka, Moscow (2002)Google Scholar
  63. 63.
    Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)Google Scholar
  64. 64.
    Fortov, V.E. (ed.): Explosive-Driven Generators of Powerful Electrical Current Pulses. Cambridge International Science, Cambridge (2007)Google Scholar
  65. 65.
    Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 50(4), 333 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    Fortov, V.E.: Ekstremal’nye sostoyaniya veshchestva (Extreme States of Matter). Fizmatlit, Moscow (2009) [Translated into English: Extreme States of Matter. Series: The Frontiers Collection. Springer, Berlin/Heidelberg (2011)]Google Scholar
  67. 67.
    Fortov, V.E., Lomonosov, I.V.: Thermodynamics of extreme states of matter. Pure Appl. Chem. 69(4), 893–904 (1997)CrossRefGoogle Scholar
  68. 68.
    Fortov, V.E., Yakushev, V.V., Kagan, K.L., et al.: Anomalous electric conductivity of lithium under quasi-isentropic compression to 60 GPa (0.6 Mbar). Transition into a molecular phase? JETP Lett. 70(9), 628–632 (1999)Google Scholar
  69. 69.
    Fortov, V.E., Gryaznov, V.K., Mintsev, V.B., et al.: Thermophysical properties of shock compressed argon and xenon. Contrib. Plasma Phys. 41(2–3), 215–218 (2001)Google Scholar
  70. 70.
    Fortov, V.E., Ternovoi, V.Y., Zhernokletov, M.V., et al.: Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures. J. Exp. Theor. Phys. 97(2), 259–278 (2003)Google Scholar
  71. 71.
    Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., Funtikov, A.I.: High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter. Springer, New York (2004)CrossRefGoogle Scholar
  72. 72.
    Fortov, V.E., Mintsev, V.B., Ternovoi, V.Y., et al.: Conductivity of nonideal plasma. High Temp. Mater. Processes 8(3), 447–459 (2004)Google Scholar
  73. 73.
    Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  74. 74.
    Fortov, V.E., Ilkaev, R.I., Arinin, V.A., et al.: Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99(18), 185001 (2007)Google Scholar
  75. 75.
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    Fowler, C.M., et al.: In: Titov, V., Shvetsov, G. (eds.) Megagauss Fields and Pulsed Power Systems, p. 337. Nova Science Publishers, Commack, NY (1990)Google Scholar
  77. 77.
    Garanin, S.G.: High-power lasers and their applications in high-energy-density physics studies. Phys. Usp. 54(4), 415–421 (2011)ADSCrossRefGoogle Scholar
  78. 78.
    Gasilov, V.A., Zakharov, S.V., Smirnov, V.P.: Generation of intense radiation fluxes and megabar pressures in liner systems. JETP Lett. 53(2), 85 (1991)ADSGoogle Scholar
  79. 79.
    Gavrilenko, V.I.: In: Proceedings of the 14th International Symposium “Nanostructures: Physics and Technology”, St. Petersburg, p. 166 (2006)Google Scholar
  80. 80.
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin/Heidelberg (2001)CrossRefGoogle Scholar
  81. 81.
    Giorla, J., Bastian, J., Bayer, C., et al.: Target design for ignition experiments on the laser Mégajoule facility. Plasma Phys. Control. Fusion 48(12B), B75–B82 (2006)Google Scholar
  82. 82.
    Glenzer, S.H., MacGowan, B.J., Meezan, N.B., et al.: Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004 (2011)Google Scholar
  83. 83.
    Glidden, S.C., Richter, M., Hammer, D.A., Kalantar, D.H.: 1 kW X-pinch soft X-ray source powered by a 500 kA, 100 ns, 40 pps pulser. In: 9th IEEE International Pulsed Power Conference, 1993. Digest of Technical Papers, vol. 1, p. 459 (1993)Google Scholar
  84. 84.
    Glushkin, V., Velikhov, E., et al.: Perspective of kiloterawatt soft x-ray source based on slow inductive storage with energy 1 gigajoule. In: Van Horn, H., Ichimaru, S. (eds.) Proceedings 12th International Conference on High-Power Particle Beams, June 7–12, 1998, Haifa, p. 71 (1998)Google Scholar
  85. 85.
    Goncharov, V.N., Sangster, T.C., Boehly, T.R., et al.: Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. Phys. Rev. Lett. 104, 165001 (2010)Google Scholar
  86. 86.
    Grabovskii, E.V., Vorob’ev, O.Y., Dyabilin, K.S., et al.: Excitation of intense shock waves by soft x radiation from a Z-pinch plasma. JETP Lett. 60(1), 1 (1994)Google Scholar
  87. 87.
    Grigor’ev, F.V., Kormer, S.B., Mikhailova, O.L., et al.: Experimental determination of the compressibility of hydrogen at densities 0.5–2 g/cm3. Metallization of hydrogen. JETP Lett. 16(5), 201 (1972)Google Scholar
  88. 88.
    Grigor’ev, F.V., Kormer, S.B., Mikhailova, O.L., et al.: Equation of state of molecular hydrogen. Phase transition into the metallic state. J. Exp. Theor. Phys. 48(5), 847 (1978)Google Scholar
  89. 89.
    Grinevich, B.E., et al.: In: Chernyshev, V.K., Selemir, V.D., Plyashkevich, L.N. (eds.) Megagauss and Megaampere Pulsed Technology and Applications. Proceeding of the 7th International Conference on Megagauss Magnetic Field Generation and Related Topics, p. 677. RFYaTs-VNIIEF, Sarov (1997)Google Scholar
  90. 90.
    Grinevich, B.E., Demidov, V.A., Ivanovsky, A.V., Selemir, V.D.: Explosive magnetic generators and their application in scientific experiments. Phys. Usp. 54(4), 403–408 (2011)ADSCrossRefGoogle Scholar
  91. 91.
    Grishechkin, S.K., Gruzdev, S.K., Gryaznov, V.K., et al.: Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium. JETP Lett. 80(6), 398–404 (2004)Google Scholar
  92. 92.
    Gryaznov, V.K., Fortov, V.E., Zhernokletov, M.V., et al.: Shock compression and thermodynamics of highly nonideal metallic plasma. J. Exp. Theor. Phys. 87(4), 678–690 (1998)Google Scholar
  93. 93.
    Gryaznov, V.K., Nikolaev, D.N., Ternovoi, V.Y., et al.: Generation of a nonideal plasma by shock compression of a highly porous SiO2 aerogel. Chem. Phys. Rep. 17(1–2), 239–245 (1998)Google Scholar
  94. 94.
    Hammel, B.A., National Ignition Campaign Team: The NIF ignition program: progress and planning. Plasma Phys. Control. Fusion 48(12B), B497–B506 (2006)CrossRefGoogle Scholar
  95. 95.
    Hawke, P.S., Burgess, T.J., Duerre, D.E., et al.: Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41(14), 994–997 (1978)Google Scholar
  96. 96.
    Hemley, R.J., Ashcroft, N.W.: The revealing role of pressure in the condensed matter sciences. Phys. Today 51(8), 26–32 (1998)CrossRefGoogle Scholar
  97. 97.
    Hemley, R.J., Mao, H.K.: Overview of static high pressure science. In: Hemley, R.J., Chiarotti, G.L., Bernasconi, M., Ulivi, L. (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 3. IOS Press, Amsterdam (2002)Google Scholar
  98. 98.
    Hicks, D.G., Boehly, T.R., Celliers, P.M., et al.: Laser-driven single shock compression of fluid deuterium from 45 to 220 gpa. Phys. Rev. B 79, 014112 (2009)Google Scholar
  99. 99.
    Hoffmann, D., Tahir, N., Udrea, S., et al.: High energy density physics with heavy ion beams and related interaction phenomena. Contrib. Plasma Phys. 50(1), 7–15 (2010)Google Scholar
  100. 100.
    Hogan, W.J. (ed.): Energy from Inertial Fusion. IAEA, Vienna (1995)Google Scholar
  101. 101.
    Iosilevskii, I.L., Griaznov, V.K.: Comparative accuracy of thermodynamic description of properties of a gas plasma in the Thomas–Fermi and Saha approximations. High Temp. 19(6), 799–803 (1982)ADSGoogle Scholar
  102. 102.
    Jones, B., Ampleford, D.J., Vesey, R.A., et al.: Planar wire-array Z-pinch implosion dynamics and X-ray scaling at multiple-MA drive currents for a compact multisource hohlraum configuration. Phys. Rev. Lett. 104, 125001 (2010)Google Scholar
  103. 103.
    Kanel, G.I., Rasorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. Springer, New York (2004)CrossRefGoogle Scholar
  104. 104.
    Kazei, Z.A., Kirste, A., von Ortenberg, M., et al.: Are the crossover effects observable in ErBa2Cu3O7−δ and ErVO4 in pulsed magnetic fields. Physica B: Condens. Matter 346–347(0), 241–245 (2004)Google Scholar
  105. 105.
    Kirste, A., von Ortenberg, M., Demidov, A.A., et al.: Crossover in the van vleck paramagnet tmpo4. Physica B: Condens. Matter 336(3–4), 335–343 (2003)Google Scholar
  106. 106.
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressures and temperatures). Sov. Phys. – Usp. 14(4), 512–523 (1972)Google Scholar
  107. 107.
    Kirzhnits, D.A., Lozovik, Y.E., Shpatakovskaya, G.V.: Statistical model of matter. Sov. Phys. – Usp. 18(9), 649–672 (1975)Google Scholar
  108. 108.
    Kline, J.L., Glenzer, S.H., Olson, R.E., et al.: Observation of high soft X-ray drive in large-scale hohlraums at the national ignition facility. Phys. Rev. Lett. 106, 085003 (2011)Google Scholar
  109. 109.
    Klir, D., Kravarik, J., Kubes, P., et al.: Neutron emission generated during wire array Z-pinch implosion onto deuterated fiber. Phys. Plasmas 15(3), 032701 (2008)Google Scholar
  110. 110.
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87(22), 225501 (2001)Google Scholar
  111. 111.
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 gpa. Phys. Rev. Lett. 90, 035505 (2003)Google Scholar
  112. 112.
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques. Phys. Rev. B 69, 144209 (2004)Google Scholar
  113. 113.
    Kopyshev, V.P., Urlin, V.D.: Izentropicheskaya szhimaemost’ i uravnenie sostoyaniya vodoroda do davleniya 1 TPa (Isentropic compressibility and equation of state of hydrogen up to a pressure of 1 TPa). In: Fortov, V.E., Altshuler, L.V., Trunin, R.F., Funtikov, A.I. (eds.) Udarnye Volny i Ekstremal’nye Sostoyaniya Veshchestva (Shock Waves and Extreme States of Matter), Chap. 5, pp. 297–314. Nauka, Moscow (2000)Google Scholar
  114. 114.
    Korzhimanov, A.V., Gonoskov, A.A., Khazanov, E.A., Sergeev, A.M.: Horizons of petawatt laser technology. Phys. Usp. 54(1), 9–28 (2011)ADSCrossRefGoogle Scholar
  115. 115.
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading, MA (1988)Google Scholar
  116. 116.
    Kuropatkin, Y., Mironenko, V., Suvorov, V., et al.: Uncored betatron bim-m a source of bremsstrahlung for flash radiography. In: Cooperstein, G., Vitkovitsky, I. (eds.) 1997 11th IEEE International Pulsed Power Conference, 1997. Digest of Technical Papers, vol. 2, pp. 1669–1673 (1997)Google Scholar
  117. 117.
    Lebedev, S.V., Savvatimskii, A.I.: Metals during rapid heating by dense currents. Sov. Phys. – Usp. 27(10), 749–771 (1984)Google Scholar
  118. 118.
    Lee, C.M., Thorsos, E.I.: Properties of matter at high pressures and temperatures. Phys. Rev. A 17(6), 2073–2076 (1978)ADSCrossRefGoogle Scholar
  119. 119.
    Lemke, R.W., Sinars, D.B., Waisman, E.M., et al.: Effects of mass ablation on the scaling of X-ray power with current in wire-array Z pinches. Phys. Rev. Lett. 102, 025005 (2009)Google Scholar
  120. 120.
    Levitin, R.Z., Zvezdin, A.K., Ortenberg, M., et al.: Faraday effect in Tb3Ga5O12 in a rapidly increasing ultrastrong magnetic field. Phys. Solid State 44, 2107–2111 (2002)Google Scholar
  121. 121.
    Lieb, E.H., Simon, B.: Thomas–Fermi theory revisited. Phys. Rev. Lett. 31(11), 681–683 (1973)ADSCrossRefGoogle Scholar
  122. 122.
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  123. 123.
    Loubeyre, P., LeToullec, R., Hausermann, D., et al.: X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383(6602), 702–704 (1996)Google Scholar
  124. 124.
    Loubeyre, P., Occelli, F., Le Toulec, R.: Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 416(6881), 613–617 (2002)Google Scholar
  125. 125.
    Loubeyre, P., Celliers, P.M., Hicks, D.G., et al.: Coupling static and dynamic compressions: first measurements in dense hydrogen. High Pressure Res. 24(1), 25–31 (2004)Google Scholar
  126. 126.
    Maksimov, E.G., Magnitskaya, M.V., Fortov, V.E.: Non-simple behavior of simple metals at high pressure. Phys. Usp. 48(8), 761 (2005)ADSCrossRefGoogle Scholar
  127. 127.
    McBride, R.D., Shelkovenko, T.A., Pikuz, S.A., et al.: Implosion dynamics and radiation characteristics of wire-array Z pinches on the Cornell Beam Research Accelerator. Phys. Plasmas 16(1), 012706 (2009)Google Scholar
  128. 128.
    McMahan, A.K., Ross, M.: In: Timmerhaus, K.D., Barber, M.S. (eds.) High Pressure Science and Technology, p. 920. Plenum, New York (1979)Google Scholar
  129. 129.
    Mochalov, M.A., Il’kaev, R.I., Fortov, V.E., et al.: Measurement of the compressibility of a deuterium plasma at a pressure of 1800 GPa. JETP Lett. 92(5), 300–304 (2010)Google Scholar
  130. 130.
    Mochalov, M.A., Zhernokletov, M.V., Il’kaev, R.I., et al.: Measurement of density, temperature, and electrical conductivity of a shock-compressed nonideal nitrogen plasma in the megabar pressure range. J. Exp. Theor. Phys. 110(1), 67 (2010)Google Scholar
  131. 131.
    Mokhov, V.N.: Sov. Phys. Dokl. 24, 557 (1979)ADSGoogle Scholar
  132. 132.
    Mokhov, V.N.: Formation of the thermonuclear fusion ideas. In: Selemir, V.D., Plyashkevichu, L.N. (eds.) Megagauss-IX, p. 665. VNIIEF, Sarov (2004)Google Scholar
  133. 133.
    More, R.M., Skupsky, S.: Nuclear-motion corrections to the Thomas–Fermi equation of state for high-density matter. Phys. Rev. A 14(1), 474–479 (1976)ADSCrossRefGoogle Scholar
  134. 134.
    Moses, E.I.: The National Ignition Facility and the National Ignition Campaign. IEEE Trans. Plasma Sci. 38(4, Part 2, SI), 684–689 (2010). 36th IEEE International Conference on Plasma Science, San Diego, CA, May 31–Jun 05, 2009Google Scholar
  135. 135.
    Moses, E.I., Bonanno, R.E., Haynam, C.A., et al.: The National Ignition Facility: path to ignition in the laboratory. Eur. Phys. J. D 44(2), 215–218 (2006)Google Scholar
  136. 136.
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006)CrossRefGoogle Scholar
  137. 137.
    Nabatov, S.S., Dremin, A.M., Postnov, V.I., Yakushev, V.V.: Measurement of the electrical conductivity of sulfur under superhigh dynamic pressures. JETP Lett. 29(7), 369 (1979)ADSGoogle Scholar
  138. 138.
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)Google Scholar
  139. 139.
    Nellis, W.J.: Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69(5), 1479–1580 (2006)ADSCrossRefGoogle Scholar
  140. 140.
    Notake, T., Saito, T., Tatematsu, Y., et al.: Development of a novel high power sub-THz second harmonic gyrotron. Phys. Rev. Lett. 103, 225002 (2009)Google Scholar
  141. 141.
    Oslon, C., Rochau, G., et al.: Development path for Z-pinch IFE. Fusion Sci. Technol. 47(3), 633–640 (2005)Google Scholar
  142. 142.
    Parsons, W., Ballard, E., Bartsch, R., et al.: The Atlas project – a new pulsed power facility for high energy density physics experiments. IEEE Trans. Plasma Sci. 25(2), 205–211 (1997)Google Scholar
  143. 143.
    Pavlovskii, A.I., et al.: Sov. Phys. Dokl. 10, 30 (1965)Google Scholar
  144. 144.
    Pavlovskii, A.I., et al.: In: Titov, V.M., Shvetsov, G.A. (eds.) Sverkhsil’nye magnitnye polya. Fizika. Tekhnika. Primenenie (Ultrahigh Magnetic Fields: Physics, Techniques, Application): Trudy VII Mezhdunarodnoi Konferentsii po Generatsii Megagaussnykh Magnitnykh Polei i Rodstvennym Eksperimentam (Proceedings of VII International Conference on Megagauss Magnetic Field Generation and Related Experiments), p. 347. Nauka, Moscow (1984)Google Scholar
  145. 145.
    Pavlovskii, A.I., et al.: In: Titov, V.M., Shvetsov, G.A. (eds.) Sverkhsil’nye magnitnye polya. Fizika. Tekhnika. Primenenie (Ultrahigh Magnetic Fields: Physics, Techniques, Application): Trudy VII Mezhdunarodnoi Konferentsii po Generatsii Megagaussnykh Magnitnykh Polei i Rodstvennym Eksperimentam (Proceedings of VII International Conference on Megagauss Magnetic Field Generation and Related Experiments), p. 19. Nauka, Moscow (1984)Google Scholar
  146. 146.
    Pavlovski, A., Boriskov, G., et al.: Isentropic solid hydrogen compression by ultrahigh magnetic field pressure in megabar range. In: Fowler, C., Caird, R., Erickson, D. (eds.) Megagauss Technology and Pulsed Power Applications, p. 255. Plenum Press, New York/London (1987)Google Scholar
  147. 147.
    Pavlovskii, A.I., Kolokolchikov, N.P., Platonov, V.V., et al.: Destruction of superconductivity in YBa2Cu3O7−x ceramics by ultrahigh magnetic field. Physica C: Superconductivity 162–164, Part 2(0), 1659–1660 (1989)Google Scholar
  148. 148.
    Pavlovskii, A.I., Lyudaev, R.Z., Kravchenko, A.S., et al.: In: Titov, V.M., Shvetsov, G.A. (eds.) Megagauss Fields and Pulsed Power Systems, p. 331. Nova Science Publishers, Commack, NY (1990)Google Scholar
  149. 149.
    Pavlovskii, A.I., Ludaev, R.Z., Plyashkevich, V.N., et al.: MGG applications for powered channeling neodim laser. In: Cowan, V., Spielman, R.B. (eds.) Megagauss Magnetic Field Generation and Pulsed Power Applications, pp. 969–976. Nova Science Publishers, Commack, NY (1994)Google Scholar
  150. 150.
    Pavlovskii, A.I., et al.: In: Cowan, V., Spielman, R.B. (eds.) Megagauss Magnetic Field Generation and Pulsed Power Applications, p. 977. Nova Science Publishers, Commack, NY (1994)Google Scholar
  151. 151.
    Puhlmann, N., Tatsenko, O.M., Stolpe, I., et al.: Cyclotron resonance on galliumnitride in fields up to 700 t generated by explosive driven flux compression. Physica B: Condens. Matter 294–295(0), 447–452 (2001)Google Scholar
  152. 152.
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003)ADSCrossRefGoogle Scholar
  153. 153.
    Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In: Proceedings of 13th International Conference on High Power Particle Beams, Nagaoka (2000)Google Scholar
  154. 154.
    Reinovsky, R.E., Anderson, W.E., Atchison, W.L., et al.: Shock-wave and material properties experiments using the Los Alamos Atlas pulsed power system. AIP Conf. Proc. 706(1), 1191–1194 (2004)Google Scholar
  155. 155.
    Rochau, G.A., Bailey, J.E., Maron, Y., et al.: Radiating shock measurements in the Z-pinch dynamic hohlraum. Phys. Rev. Lett. 100, 125004 (2008)Google Scholar
  156. 156.
    Rochau, G.A., Bailey, J.E., Maron, Y.: Applied spectroscopy in pulsed power plasmas. Phys. Plasmas 17(5), 055501 (2010)ADSCrossRefGoogle Scholar
  157. 157.
    Rukhadze, A.A., Yusupaliev, U.: On the feasibility of the Coulomb explosion of a metal. Tech. Phys. 49(7), 933 (2004)CrossRefGoogle Scholar
  158. 158.
    Ryutov, D.D., Derzon, M.S., Matzen, M.K.: The physics of fast Z-pinches. Rev. Mod. Phys. 72(1), 167–223 (2000)ADSCrossRefGoogle Scholar
  159. 159.
    Sakharov, A.D.: Magnetoimplosive generators. Phys. Usp. 9(2), 294–299 (1966)ADSCrossRefGoogle Scholar
  160. 160.
    Sakharov, A.D., et al.: Sov. Phys. Dokl. 10, 1045 (1966)Google Scholar
  161. 161.
    Sangster, T.C., Goncharov, V.N., Betti, R., et al.: Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega. Phys. Plasmas 17(5), 056312 (2010)Google Scholar
  162. 162.
    Sansone, G., Benedetti, E., Calegari, F., et al.: Isolated single-cycle attosecond pulses. Science 314(5798), 443–446 (2006)Google Scholar
  163. 163.
    Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848), 717–720 (2001)ADSCrossRefGoogle Scholar
  164. 164.
    Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating of crystalline ion beams. J. Phys. B 36(3), 561–571 (2003)ADSCrossRefGoogle Scholar
  165. 165.
    Selemir, V.D., Demidov, V.A., Ivanovskii, A.V., et al.: Explosion complex for the generation of pulsed soft X radiation. Plasma Phys. Rep. 25(12), 1000 (1999)Google Scholar
  166. 166.
    Selemir, V.D., Terekhin, V.A., Kravchenko, A.S., et al.: Investigation of spark discharge in the ground on reproduction a lightning current pulse by means of EMG. In: Maenchen, J., Schamiloglu, E. (eds.) Pulsed Power Conference, 2005, pp. 541–544. IEEE (2005)Google Scholar
  167. 167.
    Selemir, V.D., Demidov, V.A., Ermolovich, V.F., et al.: Generation of soft X-ray emission by Z-pinches powered from helical explosive magnetocumulative generators. Plasma Phys. Rep. 33, 381–390 (2007)Google Scholar
  168. 168.
    Selemir, V.D., Demidov, V.A., Boriskin, A.S., et al.: Disk magnetocumulative generator of 480-mm diameter for explosive EMIR facility. IEEE Trans. Plasma Sci. 38(8), 1762–1767 (2010)Google Scholar
  169. 169.
    Selemir, V.D., Demidov, V.A., Repin, P.B.: Explosive electrophysical complex EMIR: current state and perspectives. IEEE Trans. Plasma Sci. 38(8), 1754–1757 (2010)ADSCrossRefGoogle Scholar
  170. 170.
    Selimir, V., Tatsenko, O., et al.: Investigations in solid state physics in ultra-high magnetic fields — experimental results of kapitsa series. In: von Ortenberg, M. (ed.) Megagauss-X, Berlin, p. 219 (2005)Google Scholar
  171. 171.
    Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (Inertial Confinement Nuclear Fusion). Fizmatlit, Moscow (2005)Google Scholar
  172. 172.
    Shevtsov, V.A., et al.: In: Chernyshev, V.K., Selemir, V.D., Plyashkevich, L.N. (eds.) Megagauss and Megaampere Pulsed Technology and Applications. Proceeding of the 7th International Conference on Megagauss Magnetic Field Generation and Related Topics, p. 282. RFYaTs-VNIIEF, Sarov (1997)Google Scholar
  173. 173.
    Shilkin, N.S., Dudin, S.V., Gryaznov, V.K., et al.: Measurements of the electron concentration and conductivity of a partially ionized inert gas plasma. J. Exp. Theor. Phys. 97(5), 922–931 (2003)Google Scholar
  174. 174.
    Shpatakovskaya, G.: Kvaziklassicheskii metod v zadachakh kvantovoi fiziki (Quasiclassical Method in Problems of Quantum Physics). LAP LAMBERT Academic Publishing, Moscow (2012)Google Scholar
  175. 175.
    Shrestha, I., Kantsyrev, V., Safronova, A., et al.: Investigation of characteristics of hard X-rays produced during implosions of wire array loads on 1.6 MA Zebra generator. High Energy Density Phys. 6(1), 113–120 (2010)Google Scholar
  176. 176.
    Sinars, D.B., Cuneo, M.E., Yu, E.P., et al.: Measurements and simulations of the ablation stage of wire arrays with different initial wire sizes. Phys. Plasmas 13(4), 042704 (2006)Google Scholar
  177. 177.
    Sinars, D.B., Slutz, S.A., Herrmann, M.C., et al.: Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners. Phys. Plasmas 18(5), 056301 (2011)Google Scholar
  178. 178.
    Sinko, G.V.: Calculation of thermodynamic functions of simple substances on the basis of the equations of the self-coordinated field (in Russian). Chis. Met. Meh. Spl. Sred. 10(1), 124 (1979)Google Scholar
  179. 179.
    Sinko, G.V.: Some results of calculations of thermodynamic functions of aluminum, copper, cadmium and lead. A method of the self-coordinated field (in Russian). Chis. Met. Meh. Spl. Sred. 12(1), 121 (1981)Google Scholar
  180. 180.
    Slutz, S.A., Herrmann, M.C., Vesey, R.A., et al.: Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas 17(5), 056303 (2010)Google Scholar
  181. 181.
    Spielman, R.B., Long, F., Martin, T.H., et al.: PBFA II-Z: A 20-MA driver for Z-pinch experiments. In: Baker, W., Cooperstein, G. (eds.) Tenth IEEE International Pulsed Power Conference, 1995. Digest of Technical Papers, vol. 1, pp. 396–404 (1995)Google Scholar
  182. 182.
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111 (1998)Google Scholar
  183. 183.
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985)ADSCrossRefGoogle Scholar
  184. 184.
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985)ADSCrossRefGoogle Scholar
  185. 185.
    Theobald, W., Anderson, K.S., Betti, R., et al.: Advanced-ignition-concept exploration on OMEGA. Plasma Phys. Control. Fusion 51(12), 124052 (2009)Google Scholar
  186. 186.
    Trunin, R.F.: Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions. Phys. Usp. 37(11), 1123 (1994)ADSCrossRefGoogle Scholar
  187. 187.
    Trunin, R.F., Podurets, M.A., Simakov, G.V., et al.: An experimental verification of the Thomas–Fermi model for metals under high pressure. Sov. Phys. – JETP 35, 550 (1972)Google Scholar
  188. 188.
    Trunin, R.F., Urlin, V.D., Medvedev, A.B.: Dynamic compression of hydrogen isotopes at megabar pressures. Phys. Usp. 53(6), 577–593 (2010)ADSCrossRefGoogle Scholar
  189. 189.
    Turchi, P.J., Baker, W.L.: Generation of high-energy plasmas by electromagnetic implosion. J. Appl. Phys. 44(11), 4936–4945 (1973)ADSCrossRefGoogle Scholar
  190. 190.
    Vasyukov, V.A., et al.: In: The 13th International Conference on Megagauss Magnetic Field Generation and Related Topics, Suzhou (2010)Google Scholar
  191. 191.
    Vesey, R.A., Herrmann, M.C., Lemke, R.W., et al.: Target design for high fusion yield with the double Z-pinch-driven hohlraum. Phys. Plasmas 14(5), 056302 (2007)Google Scholar
  192. 192.
    Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., et al.: Shock compressibility of aluminum at p  >  1 Gbar. JETP Lett. 39(2), 82 (1984)Google Scholar
  193. 193.
    Weir, S.T., Mitchell, A.C., Nellis, W.J.: Metallization of fluid molecular hydrogen at 140 gpa (1.4 mbar). Phys. Rev. Lett. 76, 1860–1863 (1996)Google Scholar
  194. 194.
    Winterberg, F.: The magnetic booster target inertial confinement fusion driver. Z. Naturforsch. A 39A, 325 (1984)ADSGoogle Scholar
  195. 195.
    Zababahin, E.I., Zababahin, I.E.: Yavleniya neogranichennoj kumulyacii (The Phenomena of Unlimited Cumulating). Nauka, Moscow (1988)Google Scholar
  196. 196.
    Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics). Vek 2, Fryazino (2006)Google Scholar
  197. 197.
    Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966) [English Transl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola, NY (2002)]Google Scholar
  198. 198.
    Zhernokletov, M.V.: Shock compression and isentropic expansion of natural uranium. High Temp. 36(2), 214–221 (1998)Google Scholar
  199. 199.
    Zhernokletov, M.V., Zubarev, V.N., Trunin, R.F., Fortov, V.E.: Eksperimental’nye dannye po udarnoi szhimaemosti i adiabaticheskomu rasshireniju kondensirovannyh vewestv pri vysokih plotnostjah energii (Experimental Data on Shock Compressibility and Adiabatic Expansion of Condensed Matter at High Energy Density). IHF RAN, Chernogolovka (1996)Google Scholar
  200. 200.
    Zvezdin, A.K., Lubashevsky, I.A., Levitin, R.Z., et al.: Spin-flop and metamagnetic transitions in itinerant ferrimagnets. In: Wagner, D., Brauneck, W., Solontsov, A. (eds.) Proceedings of the NATO Advanced Research Workshop on Itinerant Electron Magnetism: Fluctuation Effects & Critical Phenomena, NATO Science Partnership, vol. 55, p. 285. Kluwer Academic Publishers, Moscow (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Fortov
    • 1
  1. 1.Russian Academy of Sciences Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations