Advertisement

Matter Under Extreme Conditions: Classification of States

  • Vladimir E. Fortov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 216)

Abstract

In this chapter we provide an insight into what is meant by “extreme states of matter”, define the “lower” and “upper” bounds, consider the conditions under which the matter exists at the centers of Solar System planets, the Sun and the stars, and in the relativistic collisions of heavy ions, as well as discuss the features of substance behavior with increase in pressure and temperature. We briefly outline the experimental techniques and facilities used to produce these states. Laboratory and quasi-laboratory techniques elaborated to date for generating high energy densities are described in more detail in the chapters that follow.

Keywords

Black Hole Pair Production High Energy Density Giant Planet Relativistic Electron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Al’tshuler, L.V.: Use of shock waves in high-pressure physics. Sov. Phys. Usp. 8(1), 52–91 (1965)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Al’tshuler, L.V., Trunin, R.F., Urlin, V.D., et al.: Development of dynamic high-pressure techniques in Russia. Phys. Usp. 42(3), 261 (1999)Google Scholar
  3. 3.
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. Usp. 27(3), 181–205 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Ashkroft, N.A.: Condensed matter at higher densities. In: Chiarotti, G.L., Hemley, R.J., Bernasconi, M., Ulivi, L. (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 151. IOS Press, Amsterdam (2002)Google Scholar
  5. 5.
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  6. 6.
    Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60(9), 092004 (1999)Google Scholar
  7. 7.
    Bezkrovniy, V., Filinov, V.S., Kremp, D., et al.: Monte Carlo results for the hydrogen Hugoniot. Phys. Rev. E 70(5), 057401 (2004)Google Scholar
  8. 8.
    Burke, D.L., Field, R.C., Horton-Smith, G., et al.: Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79(9), 1626–1629 (1997)Google Scholar
  9. 9.
    Calderola, P., Knopfel, H. (eds.): Physics of High Energy Density. Academic, New York (1971)Google Scholar
  10. 10.
    Cavailler, C.: Inertial fusion with the LMJ. Plasma Phys. Controlled Fusion 47(12B), B389–B403 (2005)CrossRefGoogle Scholar
  11. 11.
    Clark, E.L., Krushelnick, K., Davies, J.R., et al.: Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84(4), 670–673 (2000)Google Scholar
  12. 12.
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys. Controlled Fusion 48(2), R1–R35 (2006)Google Scholar
  13. 13.
    Drake, R.P.: High-Energy-Density Physics. Springer, Berlin, Heidelberg (2006)Google Scholar
  14. 14.
    Dubin, D.H.E., O’Nail, T.M.: Trapped nonneutral plasmas, liquids and crystals (the thermal equilibrium states). Rev. Mod. Phys. 71, 87 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Faber, T.E.: Fluid Dynamics for Physicists. Cambridge University Press, Cambridge (1977)Google Scholar
  16. 16.
    Filinov, V.S., Bonitz, M., Levashov, P., et al.: Plasma phase transition in dense hydrogen and electron–hole plasmas. J. Phys. A 36(22), 6069–6076 (2003)Google Scholar
  17. 17.
    Filinov, V.S., Levashov, P.R., Bonitz, M., Fortov, V.E.: Calculation of the shock Hugoniot of deuterium at pressures above 1 Mbar by the path-integral Monte Carlo method. Plasma Phys. Rep. 31(8), 700–704 (2005)Google Scholar
  18. 18.
    Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma). Nauka, Moscow (2000)Google Scholar
  19. 19.
    Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)Google Scholar
  20. 20.
    Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 50(4), 333 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Fortov, V.E., Ternovoi, V.Y., Zhernokletov, M.V., et al.: Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures. J. Exp. Theor. Phys. 97(2), 259–278 (2003)Google Scholar
  22. 22.
    Fortov, V.E., Khrapak, A.G., Khrapak, S.A., et al.: Dusty plasmas. Phys. Usp. 47(5), 447 (2004)Google Scholar
  23. 23.
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: current status, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005)Google Scholar
  24. 24.
    Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  25. 25.
    Fortov, V.E., Ilkaev, R.I., Arinin, V.A., et al.: Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99(18), 185001 (2007)Google Scholar
  26. 26.
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Ginzburg, V.L.: On superconductivity and superfluidity (what I have and have not managed to do), as well as on the “physical minimum” at the beginning of the XXI century (December 8, 2003). Phys. Usp. 47(11), 1155 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Giorla, J., Bastian, J., Bayer, C., et al.: Target design for ignition experiments on the laser Mégajoule facility. Plasma Phys. Controlled Fusion 48(12B), B75–B82 (2006)Google Scholar
  30. 30.
    Grabovskii, E.V., Vorob’ev, O.Y., Dyabilin, K.S., et al.: Excitation of intense shock waves by soft x radiation from a Z-pinch plasma. JETP Lett. 60(1), 1 (1994)Google Scholar
  31. 31.
    Hemley, R.J., Ashcroft, N.W.: The revealing role of pressure in the condensed matter sciences. Phys. Today 51(8), 26–32 (1998)CrossRefGoogle Scholar
  32. 32.
    Hemley, R.J., Mao, H.K.: Overview of static high pressure science. In: Hemley, R.J., Chiarotti, G.L., Bernasconi, M., Ulivi, L. (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 3. IOS Press, Amsterdam (2002)Google Scholar
  33. 33.
    Hogan, W.J. (ed.): Energy from Inertial Fusion. IAEA, Vienna (1995)Google Scholar
  34. 34.
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressures and temperatures). Sov. Phys. Usp. 14(4), 512–523 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    Kirzhnits, D.A., Lozovik, Y.E., Shpatakovskaya, G.V.: Statistical model of matter. Sov. Phys. Usp. 18(9), 649–672 (1975)ADSCrossRefGoogle Scholar
  36. 36.
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87(22), 225501 (2001)Google Scholar
  37. 37.
    Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., et al.: Numerical modeling of shock-wave instability in thermodynamically nonideal media. J. Exp. Theor. Phys. 98(4), 811–819 (2004)Google Scholar
  38. 38.
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading (1988)Google Scholar
  39. 39.
    Lebedev, S.V., Ciardi, A., Ampleford, D.J., et al.: Magnetic tower outflows from a radial wire array Z-pinch. Mon. Not. R. Astronom. Soc. 361(1), 97–108 (2005)Google Scholar
  40. 40.
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  41. 41.
    Loubeyre, P., Occelli, F., Le Toulec, R.: Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 416(6881), 613–617 (2002)Google Scholar
  42. 42.
    Mackinnon, A.J., Borghesi, M., Hatchett, S., et al.: Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 86(9), 1769–1772 (2001)Google Scholar
  43. 43.
    Maksimchuk, A., Gu, S., Flippo, K., et al.: Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84(18), 4108–4111 (2000)Google Scholar
  44. 44.
    Mitchell I.H., Bayley J.M., Chittenden J.P. et al.: A high impedance mega-ampere generator for fiber z-pinch experiments. Rev. Sci. Instrum. 67, 1533 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    Moses, E.I., Bonanno, R.E., Haynam, C.A., et al.: The National Ignition Facility: path to ignition in the laboratory. Eur. Phys. J. D 44(2), 215–218 (2006)Google Scholar
  46. 46.
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006)CrossRefGoogle Scholar
  47. 47.
    Murray, C.A., Wenk, R.A.: Observation of order–disorder transitions and particle trajectories in a model one-component plasma: time resolved microscopy of colloidal spheres. In: Van Horn, H.M., Ichimaru, S. (eds.) Strongly Coupled Plasma Physics, p. 367. University of Rochester Press, Rochester (1993)Google Scholar
  48. 48.
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington (2003)Google Scholar
  49. 49.
    Nellis, W.J.: Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69(5), 1479–1580 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [English Transl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]Google Scholar
  51. 51.
    Pieranski, P.: Colloidal crystals. Contemp. Phys. 24(1), 25–73 (1983)ADSCrossRefGoogle Scholar
  52. 52.
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In: Proc. 13th Int. Conf. on High Power Particle Beams. Nagaoka, Japan (2000)Google Scholar
  54. 54.
    Rubakov, V.A.: Large and infinite extra dimensions. Phys. Usp. 44(9), 871 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  56. 56.
    Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas 8(5), 1804–1816 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848), 717–720 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating of crystalline ion beams. J. Phys. B 36(3), 561–571 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (Inertial Confinement Nuclear Fusion). Fizmatlit, Moscow (2005)Google Scholar
  60. 60.
    Shashkin, A.A.: Metal–insulator transitions and the effects of electron–electron interactions in two-dimensional electron systems. Phys. Usp. 48(2), 129 (2005)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Shpatakovskaya, G.: Kvaziklassicheskii metod v zadachakh kvantovoi fiziki (Quasiclassical Method in Problems of Quantum Physics). LAP LAMBERT Academic Publishing, Moscow (2012)Google Scholar
  62. 62.
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111 (1998)Google Scholar
  63. 63.
    Vacca, J.R. (ed.): The World’s 20 Greatest Unsolved Problems. Prentice Hall PTR, Englewood Cliffs (2004)Google Scholar
  64. 64.
    Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966). [English Transl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Fortov
    • 1
  1. 1.Russian Academy of Sciences Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations