Advertisement

High Energy Densities Outside of Compact Astrophysical Objects

  • Vladimir E. Fortov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 216)

Abstract

In this chapter we discuss the high-energy objects in the Universe like cosmic jets, radiative shock waves, molecular clouds, cosmic rays, and gamma-ray bursts. We complete our consideration with a section concerned with the transformation of matter after the Big Bang, from the inception of the Universe to our time.

Keywords

Microwave Anisotropy Zircon Convection Lithium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abel, T.: The first stars, as seen by supercomputers. Phys. Today 64(4), 51–56 (2011)CrossRefGoogle Scholar
  2. 2.
    Achterberg, A.: Particle acceleration by an ensemble of shocks. Astron. Astrophys. 231(1), 251–258 (1990)ADSGoogle Scholar
  3. 3.
    Achterberg, A., Gallant, Y.A., Kirk, J.G., Guthmann, A.W.: Particle acceleration by ultrarelativistic shocks: theory and simulations. Mon. Not. R. Astron. Soc. 328(2), 393–408 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Arnett, D.: Oxygen-burning hydrodynamics. 1: Steady shell burning. Astrophys. J. 427(2), 932–946 (1994)Google Scholar
  5. 5.
    Arnett, D.: Supernovae and Nucleosynthesis. Princeton University Press, Princeton (1996)Google Scholar
  6. 6.
    Artyukh, V.S., Chernikov, P.A.: Physical conditions in the nucleus of the radio galaxy 3C 274. Astron. Rep. 51, 808–812 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Aschwanden, M.J.: Physics of the Solar Corona: An Introduction with Problems and Solutions, 2nd edn. Springer, Berlin (2006)Google Scholar
  8. 8.
    Astaf’eva, M., Gerasimenko, L., Geptner, A., et al.: Iskopaemye bakterii i drugie mikroorganizmy v zemnykh porodakh i astromaterialakh (Fossil Bacteria and other Microorganisms in Terrestrial Rock and Astromaterials). Paleontological Institute of the Russian Academy of Sciences, Moscow (2011)Google Scholar
  9. 9.
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  10. 10.
    Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 36(5), 337–364 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics research during nuclear explosions. Phys. Usp. 49(4), 432 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Ayukov, S.V., Baturin, A., Gryaznov, V.K., et al.: Analysis of the presence of small admixtures of heavy elements in the solar plasma by using the SAHA-S equation of state. JETP Lett. 80(3), 141–144 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. Astrophys. J. 376(1), 214–233 (1991)Google Scholar
  14. 14.
    Balick, B., Frank, A.: The extraordinary deaths of ordinary stars. Sci. Am. 291(1), 50 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60(9), 092004 (1999)Google Scholar
  16. 16.
    Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    Bell, A.R.: The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 147–156, 022105 (1978)Google Scholar
  18. 18.
    Beskin, V.S.: Magnetohydrodynamic models of astrophysical jets. Phys. Usp. 53(12), 1199–1233 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Beskin, V.S., Gurevich, A.V., Istomin, Y.N.: Physics of the Pulsar Magnetosphere. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  20. 20.
    Bisnovatyi-Kogan, G.S.: Stellar Physics: 1: Fundamental Concepts and Stellar Equilibrium. Springer, Berlin, Heidelberg (2001)zbMATHGoogle Scholar
  21. 21.
    Blinnikov, S.I., Novikov, I.D., Perevodchikova, T.V., Polnarev, A.G.: Exploding neutron stars in close binaries. Sov. Astron. Lett. 10(3), 177 (1984)ADSGoogle Scholar
  22. 22.
    Bondi, H., Hoyle, F.: On the mechanism of accretion by stars. Mon. Not. R. Astron. Soc. 104, 273 (1944)ADSCrossRefGoogle Scholar
  23. 23.
    Bousso, R.: The cosmological constant. Gen. Relativ. Gravit. 40, 607–637 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Bula, C., McDonald, K.T., Prebys, E.J., et al.: Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76(17), 3116–3119 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Burdyuzha, V.V.: The cosmological constant (a modern view). Astron. Rep. 53(5), 381 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Burdyuzha, V.V.: Dark components of the universe. Phys. Usp. 53(4), 419–424 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Burke, D.L., Field, R.C., Horton-Smith, G., et al.: Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79(9), 1626–1629 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Bykov, A.M., Toptygin, I.N.: Instabilities of a multicomponent plasma with accelerated particles and magnetic field generation in astrophysical objects. Phys. Usp. 50(2), 141–174 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Carroll, S.M.: The cosmic origins of time’s arrow. Sci. Am. 298(6), 48 (2008)CrossRefGoogle Scholar
  30. 30.
    Chen, P., Tajima, T., Takahashi, Y.: Plasma wakefield acceleration for ultrahigh-energy cosmic rays. Phys. Rev. Lett. 89(16), 161101 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Chernikov, P.A., Artyukh, V.S., Tyul’Bashev, S.A., Lapaev, K.A.: Study of the physical conditions in active galactic nuclei. Physical conditions in the cores of two nearby radio galaxies. Astron. Rep. 50, 202–209 (2006)Google Scholar
  32. 32.
    Chernin, A.D.: Cosmic vacuum. Phys. Usp. 44(11), 1099 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    Chernin, A.D.: Dark energy and universal antigravitation. Phys. Usp. 51(3), 253 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Clark, E.L., Krushelnick, K., Davies, J.R., et al.: Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84(4), 670–673 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    Cowan, T.E., Hunt, A.W., Phillips, T.W., et al.: Photonuclear fission from high energy electrons from ultraintense laser-solid interactions. Phys. Rev. Lett. 84(5), 903–906 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys. Controlled Fusion 48(2), R1–R35 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Disdier, L., Garconnet, J.P., Malka, G., Miquel, J.L.: Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys. Rev. Lett. 82(7), 1454–1457 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    Drake, R.P.: High-Energy-Density Physics. Springer, Berlin, Heidelberg (2006)Google Scholar
  39. 39.
    Drake, R.P., Leibrandt, D.R., Harding, E.C., et al.: Nonlinear mixing behavior of the three-dimensional Rayleigh–Taylor instability at a decelerating interface. Phys. Plasmas 11(5), 2829–2837 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Edens, A.D., Ditmire, T., Hansen, J.F., et al.: Studies of laser-driven radiative blast waves. Astrophys. Space Sci. 298(1–2), 39–47 (2005)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Efremov, Y.N.: Spiral’naja struktura nashej galaktiki (Spiral structure of our galaxy). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 313. Vek 2, Fryazino (2007)Google Scholar
  42. 42.
    Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96(10), 105001 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    European Southern Observatory: http://www.eso.org/
  44. 44.
    Faber, T.E.: Fluid Dynamics for Physicists. Cambridge University Press, Cambridge (1977)zbMATHGoogle Scholar
  45. 45.
    Faber, S.M., Gallagher, J.S.: Exploding neutron stars in close binaries. Annu. Rev. Astron. Astrophys. 17, 135–187 (1979)ADSCrossRefGoogle Scholar
  46. 46.
    Fabrika, S.: The jets and supercritical accretion disk in SS433. Astrophys. Space Phys. Rev. 12, 1 (2004)ADSGoogle Scholar
  47. 47.
    Falize, E., Bouquet, S., Michaut, C.: Radiation hydrodynamics scaling laws in high energy density physics and laboratory astrophysics. J. Phys. Conf. Ser. 112(4), 042016 (4pp) (2008)Google Scholar
  48. 48.
    Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75(8), 1169–1174 (1949)ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma). Nauka, Moscow (2000)Google Scholar
  50. 50.
    Fortov, V.E., Khrapak, A.G., Khrapak, S.A., et al.: Dusty plasmas. Phys. Usp. 47(5), 447 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: current status, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  53. 53.
    Frieman, J.A., Turner, M.S., Huterer, D.: Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 46(1), 385–432 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Geach, J.E.: The lost galaxies. Sci. Am. 304(5), 46–53 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Gehrels, N., Piro, L., Leonard, P.J.T.: The brightest in the universe – gamma-ray bursts Herald the birth of a black hole. Sci. Am. 287(6), 84–91 (2002)CrossRefGoogle Scholar
  56. 56.
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)CrossRefGoogle Scholar
  57. 57.
    Ginzburg, V.L.: On superconductivity and superfluidity (what I have and have not managed to do), as well as on the “physical minimum” at the beginning of the XXI century (December 8, 2003). Phys. Usp. 47(11), 1155 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    Ginzburg, V.L., Syrovatskii, S.I.: The Origin of Cosmic Rays. Pergamon Press, Oxford (1964)CrossRefGoogle Scholar
  59. 59.
    Glendenning, N.K.: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, 2nd edn. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  60. 60.
    Gliner, E.: Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. J. Exp. Theor. Phys. 22(2), 378 (1966)ADSGoogle Scholar
  61. 61.
    Gorbunov, D.S., Rubakov, V.A.: Vvedenie v teoriyu rannei Vselennoi. Kosmologicheskie vozmushcheniya. Inflyatsionnaya teoriya, vol. 2. Krasand, Moscow (2010)Google Scholar
  62. 62.
    Grabovskii, E.V., Vorob’ev, O.Y., Dyabilin, K.S., et al.: Excitation of intense shock waves by soft x radiation from a Z-pinch plasma. JETP Lett. 60(1), 1 (1994)ADSGoogle Scholar
  63. 63.
    Greisen, K.: End to the cosmic-ray spectrum? Phys. Rev. Lett. 16(17), 748–750 (1966)ADSCrossRefGoogle Scholar
  64. 64.
    Grib, A.A.: Osnovnye predstavleniya sovremennoi kosmologii (Basic Notions of Modern Cosmology). Fizmatlit, Moscow (2008)Google Scholar
  65. 65.
    Grib, A.A.: Osnovnye predstavleniya sovremennoi kosmologii (The Basic Representations of Modern Cosmology). FizMatLit, Moscow (2008)Google Scholar
  66. 66.
    Grishchuk, L.P.: Relic gravitational waves and their detection. In: Lämmerzahl, C., Everitt, C.W.F., Hehl, F.W. (eds.) Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space. Lecture Notes in Physics, vol. 562, p. 167. Springer, Berlin, Heidelberg (2001)Google Scholar
  67. 67.
    Grishchuk, L.P.: Relic gravitational waves and cosmology. Phys. Usp. 48(12), 1235 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    Hansen, J.F., Edwards, M.J., Froula, D.H., et al.: Laboratory observation of secondary shock formation ahead of a strongly radiative blast wave. Phys. Plasmas 13(2), 022105 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    Hawking, S.W.: A Brief History of Time: From the Big Bang to Black Holes. Bantam Books, Toronto (1988)Google Scholar
  70. 70.
    Hayashida, N., Honda, K., Honda, M., et al.: Observation of a very energetic cosmic ray well beyond the predicted 2.7 K cutoff in the primary energy spectrum. Phys. Rev. Lett. 73(26), 3491–3494 (1994)Google Scholar
  71. 71.
    Hu, W., White, M.: The cosmic symphony. Sci. Am. 290(2), 44–53 (2004)CrossRefGoogle Scholar
  72. 72.
    Imshennik, V., Nadyozhin, D.: Supernova-1987A, and the emergence of the blast wave at the surface of the compact presupernova. Sov. Astron. Lett. 14(6), 449–452 (1988)ADSGoogle Scholar
  73. 73.
    Ivanova, L.N., Imshennik, V.S., Chechotkin, V.M.: Pulsation regime of the thermonuclear explosion of a star’s dense carbon core. Astrophys. Space Sci. 31(2), 497–514 (1974)ADSCrossRefGoogle Scholar
  74. 74.
    Kando, M., Nakajima, K., Arinaga, M., et al.: Interaction of terawatt laser with plasma. J. Nucl. Mater. 248(1), 405–407 (1997)ADSCrossRefGoogle Scholar
  75. 75.
    Kapitsa, S.P.: Paradoksy rosta. Zakony razvitiya chelovechestva (Paradoxes of Growth. Laws of Mankind Development). Alpina Non-Fiction, Moscow (2012)Google Scholar
  76. 76.
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressures and temperatures). Sov. Phys. Usp. 14(4), 512–523 (1972)ADSCrossRefGoogle Scholar
  77. 77.
    Kirzhnits, D.A.: Lektsii po fizike (Lectures on Physics). Nauka, Moscow (2006)Google Scholar
  78. 78.
    Kodama, R., Tanaka, K.A., Sentoku, Y., et al.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 84(4), 674–677 (2000)ADSCrossRefGoogle Scholar
  79. 79.
    Kodama, R., Norreys, P.A., Mima, K., et al.: Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412(6849), 798–802 (2001)ADSCrossRefGoogle Scholar
  80. 80.
    Krauss, L.M., Scherrer, R.J.: The end of cosmology? Sci. Am. 298(3), 46–53 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading (1988)Google Scholar
  82. 82.
    Lada, C.J.: Cold outflows, energetic winds, and enigmatic jets around young stellar objects. Annu. Rev. Astron. Astrophys. 23, 267–317 (1985)ADSCrossRefGoogle Scholar
  83. 83.
    Levin, A.: Vozrast mirozdaniya: slushaem pul’s vselennoi (The age of the universe: listening to the pulse of the universe). Populyarnaya Mekhanika 115(5), 54–60 (2012)Google Scholar
  84. 84.
    Liang, E.P., Wilks, S.C., Tabak, M.: Pair production by ultraintense lasers. Phys. Rev. Lett. 81(22), 4887–4890 (1998)ADSCrossRefGoogle Scholar
  85. 85.
    Lifshits, E.M.: Gravitational stabilities of the expanding world. J. Exp. Theor. Phys. 16, 587 (1946)Google Scholar
  86. 86.
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  87. 87.
    Lobo, F.S.N.: Phantom energy traversable wormholes. Phys. Rev. D 71, 084011 (2005)ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    Lukash, V.N., Rubakov, V.A.: Dark energy: myths and reality. Phys. Usp. 51(3), 283 (2008)ADSCrossRefGoogle Scholar
  89. 89.
    Mackinnon, A.J., Borghesi, M., Hatchett, S., et al.: Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 86(9), 1769–1772 (2001)ADSCrossRefGoogle Scholar
  90. 90.
    Maksimchuk, A., Gu, S., Flippo, K., et al.: Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84(18), 4108–4111 (2000)ADSCrossRefGoogle Scholar
  91. 91.
    Maksimchuk, A., Flippo, K., Krause, H., et al.: Plasma phase transition in dense hydrogen and electron–hole plasmas. Plasma Phys. Rep. 30(6), 473–495 (2004)ADSCrossRefGoogle Scholar
  92. 92.
    Mangles, S.P.D., Murphy, C.D., Najmudin, Z., et al.: Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431(7008), 535–538 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    Mason, R.J., Tabak, M.: Magnetic field generation in high-intensity-laser–matter interactions. Phys. Rev. Lett. 80(3), 524–527 (1998)ADSCrossRefGoogle Scholar
  94. 94.
    Matveenko, L.I., Kellermann, K.I., Pauliny-Toth, I.I.K., et al.: The structure of the nucleus of the Seyfert galaxy NGC1275. Sov. Astron. Lett. 6, 42 (1980)ADSGoogle Scholar
  95. 95.
    McCallum, J.N., Ellingsen, S.P., Lovell, J.E.J.: Magnetic field limits and spectral variability in the circinus galaxy h2o megamasers. Mon. Not. R. Astron. Soc. 376(2), 549–556 (2007)ADSCrossRefGoogle Scholar
  96. 96.
    McCray, R.: Supernova 1987A revisited. Annu. Rev. Astron. Astrophys. 31, 175–216 (1993)ADSCrossRefGoogle Scholar
  97. 97.
    Mesyats, G.A.: Impul’snaya energetika i elektronika (Pulse Power and Electronics). Nauka, Moscow (2004)Google Scholar
  98. 98.
    Meszaros, P., Rees, M.J.: Relativistic fireballs and their impact on external matter – models for cosmological gamma-ray bursts. Astrophys. J. 405, 278–284 (1991)ADSCrossRefGoogle Scholar
  99. 99.
    Michaut, C., Falize, E., Cavet, C., et al.: Link between laboratory and astrophysical radiative shocks. J. Phys.: Conf. Ser. 112(4), 042013 (4pp) (2008)Google Scholar
  100. 100.
    Michel, F.C.: Theory of Neutron Star Magnetospheres. University of Chicago Press, Chicago (1991)Google Scholar
  101. 101.
    Mihalas, D.: Stellar Atmospheres, 2nd edn. W.H. Freeman, San Francisco (1978)Google Scholar
  102. 102.
    Mima, K., Ohsuga, T., Takabe, H., et al.: Wakeless triple-soliton accelerator. Phys. Rev. Lett. 57(12), 1421–1424 (1986)ADSCrossRefGoogle Scholar
  103. 103.
    MinZayyang, T., et al.: In: Van Horn, H., Ichimaru, S. (eds.) Proc. 26th Int. Cosmic Ray Conf. (ICRC), vol. 3, p. 125. Utah University, Salt Lake City (1999)Google Scholar
  104. 104.
    Modjaz, M., Moran, J.M., Kondratko, P.T., Greenhill, L.J.: Probing the magnetic field at subparsec radii in the accretion disk of NGC 4258. Astrophys. J. 626(1), 104 (2005)ADSCrossRefGoogle Scholar
  105. 105.
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006)CrossRefGoogle Scholar
  106. 106.
    Nagano, M., Watson, A.A.: Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72(3), 689–732 (2000)ADSCrossRefGoogle Scholar
  107. 107.
    NASA, Hubblesite: http://hubblesite.org/
  108. 108.
    NASA, Jet Propulsion Laboratory: http://www.jpl.nasa.gov/
  109. 109.
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington (2003)Google Scholar
  110. 110.
    Nicolaï, P., Stenz, C., Kasperczuk, A., et al.: Studies of supersonic, radiative plasma jet interaction with gases at the Prague Asterix Laser System facility. Phys. Plasmas 15(8), 082701 (2008)ADSCrossRefGoogle Scholar
  111. 111.
    Nishida, A.: The Earth’s dynamic magnetotail. Space Sci. Rev. 91(3–4), 507–577 (2000)ADSCrossRefGoogle Scholar
  112. 112.
    Olinto, A.V.: Ultra high energy cosmic rays: the theoretical challenge. Phys. Rep. 333–334, 329–348 (2000)CrossRefGoogle Scholar
  113. 113.
    Olling, R.P., Merrifield, M.R.: Two measures of the shape of the dark halo of the Milky Way. Mon. Not. R. Astron. Soc. 311(2), 361–369 (2000)ADSCrossRefGoogle Scholar
  114. 114.
    Öpik, E.J.: Stellar associations and supernovae. Irish Astron. J. 2(8), 219–233 (1953)ADSGoogle Scholar
  115. 115.
    Panasyuk, M.I.: Stranniki vselennoj ili jeho Bol’shogo Vzryva (Wanderers of the Universe or a Big Bang Echo). Vek 2, Fryazino (2005)Google Scholar
  116. 116.
    Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958)ADSCrossRefGoogle Scholar
  117. 117.
    Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Perlmutter, S., Aldering, G., Della Valle, M., et al.: Discovery of a supernova explosion at half the age of the Universe. Nature 391(6662), 51–54 (1998)ADSCrossRefGoogle Scholar
  119. 119.
    Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of Ω and \(\varLambda\) from 42 high-redshift supernovae. Astron. J. 517(2), 565 (1999)CrossRefGoogle Scholar
  120. 120.
    Phinney, E.S.: Black hole-driven hydromagnetic flows flywheels vs. fuel. In: Ferrari, A., Pacholczyk, A.G. (eds.) Astrophysical Jets. Reidel, Dordrecht (1983)Google Scholar
  121. 121.
    Pollard, K.: What makes us human? Sci. Am. 300(5), 32-37 (2009)CrossRefGoogle Scholar
  122. 122.
    Price, P.A., Berger, E., Reichart, D.E., et al.: GRB 011121: a massive star progenitor (2002). arXiv:astro-ph/0203467v1Google Scholar
  123. 123.
    Ptitsyna, K.V., Troitsky, S.V.: Physical conditions in potential accelerators of ultrahigh energy cosmic rays: updated Hillas plot and radiation-loss constraints. Phys. Usp. 53(7), 691–701 (2010)ADSCrossRefGoogle Scholar
  124. 124.
    Ptuskin, V.S.: The origin of cosmic rays. Phys. Usp. 53(9), 958–961 (2010)ADSCrossRefGoogle Scholar
  125. 125.
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003)ADSCrossRefGoogle Scholar
  126. 126.
    Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74(4–5), 355–361 (2002)ADSCrossRefGoogle Scholar
  127. 127.
    Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In: Proc. 13th Int. Conf. on High Power Particle Beams. Nagaoka, Japan (2000)Google Scholar
  128. 128.
    Remington, B.A., Kane, J., Drake, R.P., et al.: Supernova hydrodynamics experiments on the Nova laser. Phys. Plasmas 4(5), 1994–2003 (1997)ADSCrossRefGoogle Scholar
  129. 129.
    Remington, B.A., Arnett, D., R. Paul, D., Takabe, H.: Modeling astrophysical phenomena in the laboratory with intense lasers. Science 284(5419), 1488–1493 (1999)Google Scholar
  130. 130.
    Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998)ADSCrossRefGoogle Scholar
  131. 131.
    Riordan, M., Zajc, W.A.: The first few microseconds. Sci. Am. 294(5), 34A–41 (2006)ADSCrossRefGoogle Scholar
  132. 132.
    Rozanov, A.Y.: Kogda poyavilas’ zhizn’ na Zemle? (When did life appear on the earth?). Her. Russ. Acad. Sci. 80(3), 305 (2010)CrossRefGoogle Scholar
  133. 133.
    Rubakov, V.A.: Large and infinite extra dimensions. Phys. Usp. 44(9), 871 (2001)ADSCrossRefGoogle Scholar
  134. 134.
    Rubakov, V.A.: Hierarchies of fundamental constants (to items Nos 16, 17, and 27 from Ginzburg’s list). Phys. Usp. 50(4), 390 (2007)ADSCrossRefGoogle Scholar
  135. 135.
    Rubakov, V.A., Tinyakov, P.G.: Infrared-modified gravities and massive gravitons. Phys. Usp. 51(8), 759 (2008)ADSCrossRefGoogle Scholar
  136. 136.
    Rubin, S.G.: Ustroistvo nashei vselennoi (The Constitution of Our Universe). Vek 2, Fryazino (2006)Google Scholar
  137. 137.
    Rubin, V.: Seeing dark matter in the Andromeda Galaxy. Phys. Today 59(12), 8–9 (2006)ADSCrossRefGoogle Scholar
  138. 138.
    Rubin, V.C., Ford, W.K. Jr., Krishna Kumar, C.: Stellar motions near the nucleus of M31. Astrophys. J. 181, 61–78 (1973)ADSCrossRefGoogle Scholar
  139. 139.
    Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas 8(5), 1804–1816 (2001)ADSCrossRefGoogle Scholar
  140. 140.
    Sandage, A., Tammann, G.A., Saha, A., et al.: The Hubble constant: a summary of the Hubble Space Telescope program for the luminosity calibration of type Ia supernovae by means of Cepheids. Astrophys. J. 653(2), 843–860 (2006)ADSCrossRefGoogle Scholar
  141. 141.
    Sazhin, M.V.: Kosmologija rannej vselennoj (Cosmology of the Early Universe). In: Soifer, V.N. (ed.) Sovremennoe estestvoznanie. Entsiklopediya (Modern Natural Science. Encyclopedia), vol. 4, p. 253. Magistr-Press, Moscow (2000)Google Scholar
  142. 142.
    Schekochihin, A.A., Cowley, S.C., Dorland, W.: Interplanetary and interstellar plasma turbulence. Plasma Phys. Controlled Fusion 49(5A), A195–A209 (2007)ADSCrossRefGoogle Scholar
  143. 143.
    Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars. Wiley, New York (1983)CrossRefGoogle Scholar
  144. 144.
    Shara, M.: When stars collide. Sci. Am. 287(5), 44–51 (2002)ADSCrossRefGoogle Scholar
  145. 145.
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111 (1998)ADSCrossRefGoogle Scholar
  146. 146.
    Stefani, F., Gundrum, T., Gerbeth, G., et al.: Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97(18), 184502 (2006)ADSCrossRefGoogle Scholar
  147. 147.
    Stozhkov, Y.I.: Kosmicheskie luchi (Cosmic rays). In: Soifer, V.N. (ed.) Sovremennoe estestvoznanie. Entsiklopediya (Modern Natural Science. Encyclopedia), vol. 4, p. 191. Magistr-Press, Moscow (2000)Google Scholar
  148. 148.
    Sunyaev, R.A., Zeldovich, Y.B.: Distortions of the background radiation spectrum. Nature 223(5207), 721–722 (1969)ADSCrossRefGoogle Scholar
  149. 149.
    Surdin, V.G.: Rozhdenie zvezd (Star Production). Editorial URSS, Moscow (1999)Google Scholar
  150. 150.
    Surdin, V.G.: Mlechnyj put’ (The Milky Way). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 267. Vek 2, Fryazino (2007)Google Scholar
  151. 151.
    Surdin, V.G. (ed.): Zvezdy (The Stars), 2nd edn. Astronomiya i astrofizika (Astronomy and Astrophysics). Fizmatlit, Moscow (2009)Google Scholar
  152. 152.
    Takahashi, Y., Hillman, L.W., Tajima, T.: Relativistic lasers and high-energy astrophysics: Gamma ray bursts and highest energy acceleration. In: Tajima, T., Mima, K., Baldis, H. (eds.) High-Field Science, p. 171. Kluwer/Plenum, New York (2000)Google Scholar
  153. 153.
    Takeda, M., Hayashida, N., Honda, K., et al.: Extension of the cosmic-ray energy spectrum beyond the predicted Greisen–Zatsepin–Kuz’min cutoff. Phys. Rev. Lett. 81(6), 1163–1166 (1998)ADSCrossRefGoogle Scholar
  154. 154.
    Tassoul, J.L.: Theory of Rotating Stars. Princeton University Press, Princeton, NJ (1978)Google Scholar
  155. 155.
    Tatarakis, M., Watts, I., Beg, F.N., et al.: Laser technology: Measuring huge magnetic fields. Nature 415(6869), 280 (2002)ADSCrossRefGoogle Scholar
  156. 156.
    The European X-Ray Laser Project XFEL http://xfel.desy.de/
  157. 157.
    Trodden, M., Feng, J.: Dark worlds: A shadow cosmos, woven silently into our own, may have its own rich inner life. Sci. Am. 303(5), 38–45 (2010)CrossRefGoogle Scholar
  158. 158.
    Troitskii, S.V.: Unsolved problems in particle physics. Phys. Usp. 55(1), 72–95 (2012)ADSCrossRefGoogle Scholar
  159. 159.
    Trubnikov, B.A.: Shock-wave and plasma-pinch mechanisms of galactic cosmic-ray production. J. Exp. Theor. Phys. 101(1), 160 (2005)ADSCrossRefGoogle Scholar
  160. 160.
    Trunin, R.F.: Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions. Phys. Usp. 37(11), 1123 (1994)ADSCrossRefGoogle Scholar
  161. 161.
    Tyul’Bashev, S.A.: The physical parameters of several extragalactic radio sources displaying rapid variability. Astron. Rep. 49, 967–972 (2005)ADSCrossRefGoogle Scholar
  162. 162.
    Tzortzakis, S., Mechain, G., Patalano, G., et al.: Coherent subterahertz radiation from femtosecond infrared filaments in air. Opt. Lett. 27(21), 1944–1946 (2002)ADSCrossRefGoogle Scholar
  163. 163.
    Vacca, J.R. (ed.): The World’s 20 Greatest Unsolved Problems. Prentice Hall PTR, Englewood Cliffs (2004)Google Scholar
  164. 164.
    Vainshtein, S.I., Zeldovich, Y.B., Ruzmaikin, A.A.: The Turbulent Dynamo in Astrophysics. Nauka, Moscow (1980)Google Scholar
  165. 165.
    Vinci, T., Loupias, B., Koenig, M., et al.: Laboratory astrophysics using high energy lasers: need for 2D simulation. J. Phys. Conf. Ser. 112(4), 042012 (4pp) (2008)Google Scholar
  166. 166.
    Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., et al.: Shock compressibility of aluminum at p > 1 Gbar. JETP Lett. 39(2), 82 (1984)ADSGoogle Scholar
  167. 167.
    Vlemmings, W.H.T., Bignall, H.E., Diamond, P.J.: Green bank telescope observations of the water masers of NGC 3079: accretion disk magnetic field and maser scintillation. Astrophys. J. 656(1), 198 (2007)ADSCrossRefGoogle Scholar
  168. 168.
    Wakker, B.P., Richter, P.: Our growing, breathing galaxy. Sci. Am. 290(1), 38–47 (2004)ADSCrossRefGoogle Scholar
  169. 169.
    Waxman, E.: Gamma-ray bursts and collisionless shocks. Plasma Phys. Controlled Fusion 48(12B), B137–B151 (2006)CrossRefGoogle Scholar
  170. 170.
    Weiler, T.J.: Cosmic-ray neutrino annihilation on relic neutrinos revisited: a mechanism for generating air showers above the Greisen–Zatsepin–Kuzmin cutoff. Astropart. Phys. 11(3), 303–316 (1999)ADSCrossRefGoogle Scholar
  171. 171.
    Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  172. 172.
    Willingale, L., Mangles, S.P., Nilson, P.M., et al.: Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96(24), 245002 (2006)ADSCrossRefGoogle Scholar
  173. 173.
    Woolsey, N.C., Ash, A.D., Cortois, C., et al.: Collisionless plasma astrophysics simulation experiments using lasers. AIP Conf. Proc. 827, 365–375 (2006)ADSCrossRefGoogle Scholar
  174. 174.
    Yakovlev, D.G., Levenfish, K.P., Shibanov, Y.A.: Cooling of neutron stars and superfluidity in their cores. Phys. Usp. 42(8), 737 (1999)ADSCrossRefGoogle Scholar
  175. 175.
    Zakharov, A.F., Nucita, A.A., De Paolis, F., Ingrosso, G.: Apoastron shift constraints on dark matter distribution at the galactic center. Phys. Rev. D 76, 062001 (2007)ADSCrossRefGoogle Scholar
  176. 176.
    Zakharov, A., Capozziello, S., De Paolis, F., et al.: The role of dark matter and dark energy in cosmological models: theoretical overview. Space Sci. Rev. 148, 301–313 (2009)ADSCrossRefGoogle Scholar
  177. 177.
    Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics). Vek 2, Fryazino (2006)Google Scholar
  178. 178.
    Zasov, A.V., Surdin, V.G.: Raznoobrazie galaktik (A variety of galaxies). In: Surdin, V.G. (ed.) Astronomiya: Vek XXI (Astronomy: XXIst Century), p. 329. Vek 2, Fryazino (2007)Google Scholar
  179. 179.
    Zatsepin, G.T., Kusmin, V.A.: Top boundary of cosmic ray spectrum. JETP Lett. 4(3), 78 (1966)ADSGoogle Scholar
  180. 180.
    Zavala, R.T., Taylor, G.B.: Faraday rotation measures in the parsec-scale jets of the radio galaxies m87, 3c 111, and 3c 120. Astrophys. J. Lett. 566(1), L9 (2002)ADSCrossRefGoogle Scholar
  181. 181.
    Zel’dovich, Y.B., Novikov, I.D.: Relativistic Astrophysics (in Russian). Nauka, Moscow (1967). [English Transl.: Relativistic Astrophysics. University of Chicago Press, Chicago (1971)]Google Scholar
  182. 182.
    Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966). [English Transl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002)]Google Scholar
  183. 183.
    Zel’dovich, Y.B., Levich, E.V., Syunyaev, R.A.: Stimulated Compton interaction between Maxwellian electrons and spectrally narrow radiation (in Russian). Zh. Eksp. Teor. Fiz. 62(4), 1392–1408 (1972)ADSGoogle Scholar
  184. 184.
    Zelenyi, L.M., Verigin, M.I., Zakharov, A.V., et al.: The heliosphere and the interaction of the terrestrial planets with the solar wind. Phys. Usp. 48(6), 615 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vladimir E. Fortov
    • 1
  1. 1.Russian Academy of Sciences Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations