Advertisement

Multi-agent Multi-Model Simulation of Smart Grids in the MS4SG Project

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9086)

Abstract

This paper illustrates how the multi-agent approach, or paradigm, can help in the modeling and the simulation of smart grids in the context of MS4SG (a joint project between LORIA-INRIA and EDF R&D). Smart grids simulations need to integrate together pre-existing and heterogeneous models and their simulation software; for example modeling tools of the power grids, of telecommunication networks, and of the information and decision systems. This paper describes the use of MECSYCO as a valid approach to integrate these heterogeneous models in a multi-agent smart grid simulation platform. Several use cases show the ability of MECSYCO to effectively take into account the requirements of smart grids simulation in MS4SG.

Keywords

Multi-agent Smart grids Multi-modeling Co-simulation DEVS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fritzson, P., Engelson, V.: Modelica - a unified object-oriented language for system modeling and simulation. In: Jul, Eric (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 67–90. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Mahseredjian, J., Dennetière, S., Dubé, L., Khodabakhchian, B., Gérin-Lajoie, L.: On a new approach for the simulation of transients in power systems. Electric Power Systems Research 77(11) (2007)Google Scholar
  4. 4.
    Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: NS-3 project goals. In: Proceeding of WNS2 2006, p. 13. ACM (2006)Google Scholar
  5. 5.
    Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: Proceedings of ICST, p. 60 (2008)Google Scholar
  6. 6.
  7. 7.
    Vangheluwe, H., De Lara, J., Mosterman, P.J.: An introduction to multi-paradigm modelling and simulation. In: Proc. AIS2002, pp. 9–20 (2002)Google Scholar
  8. 8.
    1516_WG - HLA Evolved Working Group: IEEE standard for modeling and simulation (M&S) high level architecture (HLA)- framework and rules. IEEE Std 1516–2010 (Revision of IEEE Std 1516–2000), pp. 1–38, August 2010Google Scholar
  9. 9.
    Siebert, J., Ciarletta, L., Chevrier, V.: Agents and artefacts for multiple models co-evolution: building complex system simulation as a set of interacting models. In: Proceedings of AAMAS 2010, pp. 509–516 (2010)Google Scholar
  10. 10.
    Hopkinson, K., Wang, X., Giovanini, R., Thorp, J., Birman, K., Coury, D.: EPOCHS: a platform for agent-based electric power and communication simulation built from commercial off-the-shelf components. IEEE T Power Systems (2006)Google Scholar
  11. 11.
    Nutaro, J., Kuruganti, P., Miller, L., Mullen, S., Shankar, M.: Integrated hybrid-simulation of electric power and communications systems. In: IEEE PES 2007, pp. 1–8 (2007)Google Scholar
  12. 12.
    Lin, H., Sambamoorthy, S., Shukla, S., Thorp, J., Mili, L.: Power system and communication network co-simulation for smart grid applications. In: 2011 IEEE PES (ISGT), pp. 1–6 (2011)Google Scholar
  13. 13.
    Galán, J.M., Izquierdo, L.R., Izquierdo, S.S., et al.: Errors and artefacts in agent-based modelling. JASSS 12(1), 1 (2009)Google Scholar
  14. 14.
    Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems. AAMAS 17(3), 432–456 (2008)Google Scholar
  15. 15.
    Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach for engineering working environments in MAS. In: Proc. AAMAS 2007. ACM (2007)Google Scholar
  16. 16.
    Zeigler, B., Praehofer, H., Kim, T.: Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press (2000)Google Scholar
  17. 17.
    Vangheluwe, H.: DEVS as a common denominator for multi-formalism hybrid systems modelling. Proc. of CACSD 2000, 129–134 (2000)Google Scholar
  18. 18.
    Zeigler, B.P.: Embedding DEV&DESS in DEVS. In: Proc. of DEVS 2007 (2006)Google Scholar
  19. 19.
    Quesnel, G., Duboz, R., Versmisse, D., Ramat, É.: DEVS coupling of spatial and ordinary differential equations: VLE framework. In: Proc. of OICMS 2005 (2005)Google Scholar
  20. 20.
    Chandy, K.M., Misra, J.: Distributed simulation: A case study in design and verification of distributed programs. IEEE Trans. Software Engineering (1979)Google Scholar
  21. 21.
    Camus, B., Bourjot, C., Chevrier, V.: Combining DEVS with multi-agent concepts to design and simulate multi-models of complex systems (WIP). In: Proc. of TMS/DEVS 2015, SCS (TBP)Google Scholar
  22. 22.
    Vaubourg, J., Chevrier, V., Ciarletta, L.: Co-simulation of IP network models in the smart grids context, using a DEVS-based platform. Technical report, Inria, Université de Lorraine (2015)Google Scholar
  23. 23.
    OMG: (DDS), v1.2, January 2007. http://www.omg.org/spec/dds/1.2
  24. 24.
    Functional Mock-up Interface. https://fmi-standard.org/
  25. 25.
    Blochwitz, T., Otter, M., Arnold, M., et al.: The functional mockup interface for tool independent exchange of simulation models. In: 8th International Modelica Conference, pp. 20–22 (2011)Google Scholar
  26. 26.
    Galli, E., Cavarretta, G., Tucci, S.: HLA-OMNET++: an HLA compliant network simulator. In: 12th IEEE/ACM DS-RT 2008 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.InriaVillers-lès-NancyFrance
  2. 2.Université de Lorraine, LORIA, UMR 7503Vandœuvre-lès-NancyFrance
  3. 3.CNRS, LORIA, UMR 750354506 Vandœuvre-lès-NancyFrance
  4. 4.EDF - R and D MIRE/R44Clamart cedexFrance

Personalised recommendations