Multi-agent Multi-Model Simulation of Smart Grids in the MS4SG Project

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9086)


This paper illustrates how the multi-agent approach, or paradigm, can help in the modeling and the simulation of smart grids in the context of MS4SG (a joint project between LORIA-INRIA and EDF R&D). Smart grids simulations need to integrate together pre-existing and heterogeneous models and their simulation software; for example modeling tools of the power grids, of telecommunication networks, and of the information and decision systems. This paper describes the use of MECSYCO as a valid approach to integrate these heterogeneous models in a multi-agent smart grid simulation platform. Several use cases show the ability of MECSYCO to effectively take into account the requirements of smart grids simulation in MS4SG.


Multi-agent Smart grids Multi-modeling Co-simulation DEVS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fritzson, P., Engelson, V.: Modelica - a unified object-oriented language for system modeling and simulation. In: Jul, Eric (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 67–90. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Mahseredjian, J., Dennetière, S., Dubé, L., Khodabakhchian, B., Gérin-Lajoie, L.: On a new approach for the simulation of transients in power systems. Electric Power Systems Research 77(11) (2007)Google Scholar
  4. 4.
    Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: NS-3 project goals. In: Proceeding of WNS2 2006, p. 13. ACM (2006)Google Scholar
  5. 5.
    Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: Proceedings of ICST, p. 60 (2008)Google Scholar
  6. 6.
  7. 7.
    Vangheluwe, H., De Lara, J., Mosterman, P.J.: An introduction to multi-paradigm modelling and simulation. In: Proc. AIS2002, pp. 9–20 (2002)Google Scholar
  8. 8.
    1516_WG - HLA Evolved Working Group: IEEE standard for modeling and simulation (M&S) high level architecture (HLA)- framework and rules. IEEE Std 1516–2010 (Revision of IEEE Std 1516–2000), pp. 1–38, August 2010Google Scholar
  9. 9.
    Siebert, J., Ciarletta, L., Chevrier, V.: Agents and artefacts for multiple models co-evolution: building complex system simulation as a set of interacting models. In: Proceedings of AAMAS 2010, pp. 509–516 (2010)Google Scholar
  10. 10.
    Hopkinson, K., Wang, X., Giovanini, R., Thorp, J., Birman, K., Coury, D.: EPOCHS: a platform for agent-based electric power and communication simulation built from commercial off-the-shelf components. IEEE T Power Systems (2006)Google Scholar
  11. 11.
    Nutaro, J., Kuruganti, P., Miller, L., Mullen, S., Shankar, M.: Integrated hybrid-simulation of electric power and communications systems. In: IEEE PES 2007, pp. 1–8 (2007)Google Scholar
  12. 12.
    Lin, H., Sambamoorthy, S., Shukla, S., Thorp, J., Mili, L.: Power system and communication network co-simulation for smart grid applications. In: 2011 IEEE PES (ISGT), pp. 1–6 (2011)Google Scholar
  13. 13.
    Galán, J.M., Izquierdo, L.R., Izquierdo, S.S., et al.: Errors and artefacts in agent-based modelling. JASSS 12(1), 1 (2009)Google Scholar
  14. 14.
    Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems. AAMAS 17(3), 432–456 (2008)Google Scholar
  15. 15.
    Ricci, A., Viroli, M., Omicini, A.: Give agents their artifacts: the A&A approach for engineering working environments in MAS. In: Proc. AAMAS 2007. ACM (2007)Google Scholar
  16. 16.
    Zeigler, B., Praehofer, H., Kim, T.: Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press (2000)Google Scholar
  17. 17.
    Vangheluwe, H.: DEVS as a common denominator for multi-formalism hybrid systems modelling. Proc. of CACSD 2000, 129–134 (2000)Google Scholar
  18. 18.
    Zeigler, B.P.: Embedding DEV&DESS in DEVS. In: Proc. of DEVS 2007 (2006)Google Scholar
  19. 19.
    Quesnel, G., Duboz, R., Versmisse, D., Ramat, É.: DEVS coupling of spatial and ordinary differential equations: VLE framework. In: Proc. of OICMS 2005 (2005)Google Scholar
  20. 20.
    Chandy, K.M., Misra, J.: Distributed simulation: A case study in design and verification of distributed programs. IEEE Trans. Software Engineering (1979)Google Scholar
  21. 21.
    Camus, B., Bourjot, C., Chevrier, V.: Combining DEVS with multi-agent concepts to design and simulate multi-models of complex systems (WIP). In: Proc. of TMS/DEVS 2015, SCS (TBP)Google Scholar
  22. 22.
    Vaubourg, J., Chevrier, V., Ciarletta, L.: Co-simulation of IP network models in the smart grids context, using a DEVS-based platform. Technical report, Inria, Université de Lorraine (2015)Google Scholar
  23. 23.
    OMG: (DDS), v1.2, January 2007.
  24. 24.
    Functional Mock-up Interface.
  25. 25.
    Blochwitz, T., Otter, M., Arnold, M., et al.: The functional mockup interface for tool independent exchange of simulation models. In: 8th International Modelica Conference, pp. 20–22 (2011)Google Scholar
  26. 26.
    Galli, E., Cavarretta, G., Tucci, S.: HLA-OMNET++: an HLA compliant network simulator. In: 12th IEEE/ACM DS-RT 2008 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.InriaVillers-lès-NancyFrance
  2. 2.Université de Lorraine, LORIA, UMR 7503Vandœuvre-lès-NancyFrance
  3. 3.CNRS, LORIA, UMR 750354506 Vandœuvre-lès-NancyFrance
  4. 4.EDF - R and D MIRE/R44Clamart cedexFrance

Personalised recommendations