English Phonetics: A Learning Approach Based on EEG Feedback Analysis

  • Luz García Martínez
  • Alejandro Álvarez Pérez
  • Carmen Benítez Ortúzar
  • Pedro Macizo Soria
  • Teresa Bajo Molina
Conference paper

DOI: 10.1007/978-3-319-18914-7_34

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9107)
Cite this paper as:
Martínez L.G., Pérez A.Á., Ortúzar C.B., Soria P.M., Molina T.B. (2015) English Phonetics: A Learning Approach Based on EEG Feedback Analysis. In: Ferrández Vicente J., Álvarez-Sánchez J., de la Paz López F., Toledo-Moreo F., Adeli H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science, vol 9107. Springer, Cham

Abstract

This work proposes a procedure to measure the human capability to discriminate couples of English vocalic phonemes embedded into words. Using the analysis of the EEG response to auditory contrasts in an oddball paradigm experiment, the Medium Mismatch Negativity potential (MMN) is evaluated. When the discrimination is achieved, MMN has a negative amplitude while positive or zero MMN amplitudes correspond to the confusion of the two vocalic phonemes heard by the subject performing the experiment. The procedure presented has many potential usages for phonetic learning tools given its capability to automatically analyze discrimination of sounds. This permits its usage in interactive and adaptive applications able to keep track of the improvements made by the users.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luz García Martínez
    • 1
  • Alejandro Álvarez Pérez
    • 2
  • Carmen Benítez Ortúzar
    • 1
  • Pedro Macizo Soria
    • 2
  • Teresa Bajo Molina
    • 2
  1. 1.Department of Signal Theory, Telematics and CommunicationsUniversity of GranadaGranadaSpain
  2. 2.Department of Experimental PsychologyUniversity of GranadaGranadaSpain

Personalised recommendations