Skip to main content

Waves in a Continuously Stratified Sea of Varying Depth

  • Chapter
  • First Online:
  • 769 Accesses

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

In the previous chapter, the propagation of internal waves was modelled under the assumption of constant water depth. However, the sea bottom only very seldom is horizontal. Therefore, varying of water depth and horizontal inhomogenities of the density field should be included for the prediction of internal waves propagation in many real situations, especially in shallow water. Observations of internal waves in the Andaman Sea (Osborne and Burch, Science 208(4443):451–460, 1980), Sulu Sea (Apel et al., J Phys Oceanogr 15:1625–1651, 1985), Massachusetts Bay (Halpern, J Mar Res 29:116–132 , 1971) and Australian North West Shelf (Holloway et al., J Phys Oceanogr 27:871–896, 1997) have shown that shoaling effects and local bottom changes may essentially influence internal waves evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramowitz M, Stegun IA (1045) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York

    Google Scholar 

  • Apel JR, Holbrook JR, Liu AK, Tsai JJ (1985) The Sulu Sea internal soliton experiment. J Phys Oceanogr 15:1625–1651

    Article  Google Scholar 

  • Babij MB (1983) Transformation and generation of internal waves over the underwater sill in the stratified ocean. In: Theoretical studies of the wave processes in the ocean. Sevastopol, pp 101–105 (in Russian)

    Google Scholar 

  • Boegman L, Ivey GN, Imberger J (2005) The degeneration of internal waves in lakes with sloping topography. Limnol Oceanogr 50(5):1620–1637

    Article  Google Scholar 

  • Bogucki DJ, Redekopp LG (1999) A mechanism for sediment resuspension by internal solitary waves. Geophys Res Lett 26(9):1317–1320

    Article  Google Scholar 

  • Bogucki DJ, Redekopp LG (2008) Climate of long internal waves and resuspension on the coastal shelf. Oceanologia 50(1):5–21

    Google Scholar 

  • Eriksen CC (1985) Implications of ocean bottom reflection for internal wave spectra and mixing. J Phys Oceanogr 15:1145–1156

    Article  Google Scholar 

  • Garrett C, Gilbert D (1988) Estimates of vertical mixing by internal waves reflected off a sloping bottom. Small-scale turbulence and mixing in the ocean. In: Proceedings of the 19th international Liege colloquium on ocean hydrodynamics, pp 405–424

    Google Scholar 

  • Grimshaw R, Pelinovsky E, Talipova T, Kurkin A (2004) Simulation of the transformation of internal solitary waves on oceanic shelves. J Phys Oceanogr 34(12):2774–2791

    Article  Google Scholar 

  • Grimshaw R, Guo C, Helfrich K, Vlasenko V (2014) Combined effect of rotation and topography on shoaling oceanic internal solitary waves. J Phys Oceanogr 44(4):1116–1132

    Article  Google Scholar 

  • Halpern D (1971) Observations of short-period internal waves in Massachusetts Bay. J Mar Res 29:116–132

    Google Scholar 

  • Helfrich KR (1992) Internal solitary wave breaking and run-up on a uniform slope. J Fluid Mech 243:133–154

    Article  Google Scholar 

  • Helfrich KR, Melville WK (1986) On long nonlinear internal waves over slope-shelf topography. J Fluid Mech 167:285–308

    Article  Google Scholar 

  • Holloway PE, Pelinovsky EN, Talipova T, Barnes B (1997) A nonlinear model of internal tide transformation on the Australian North West Shelf. J Phys Oceanogr 27:871–896

    Article  Google Scholar 

  • Holloway PE, Pelinovsky EN, Talipova T, Barnes B (1999) A generalized Korteweg-de Vries model of internal tide transformation in the coastal zone. J Geophys Res 104:18333–18350

    Article  Google Scholar 

  • Ivey GN, Nokes RI (1989) Vertical mixing due to the breaking of critical internal waves on sloping boundaries. J Fluid Mech 204:479–500

    Article  Google Scholar 

  • Keller JB, Mov VC (1969) Internal wave propagation in an inhomogeneous fluid of non-uniform depth. J Fluid Mech 38(2):365–374

    Article  Google Scholar 

  • Krauss W (1966) Interne Wellen. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Kurkina O, Talipova T, Pelinovsky E, Soomere T (2011) Mapping the internal wave field in the Baltic Sea in the context of sediment transport in shallow water. J Coast Res 64:2042–2047 (Special issue)

    Google Scholar 

  • Larsen LH (1969) Internal waves incident upon a knife edge barrier. Deep-Sea Res 16:411–419

    Google Scholar 

  • Lien RC, Henyey F, Ma B (2014) Large-amplitude internal solitary waves observed in the Northern South China Sea: properties and energetics. J Phys Oceanogr 44(4):1095–1115

    Article  Google Scholar 

  • Massel SR (1989) Hydrodynamics of coastal zones. Elsevier, Amsterdam

    Google Scholar 

  • Massel SR (2007) Ocean wave breaking and marine aerosol fluxes. Springer, New York

    Google Scholar 

  • Melnikov WA (1982) Influence of the bottoms form on the internal waves. Fizika Atm i Okeana 18:775–778 (in Russian)

    Google Scholar 

  • Miropolsky YZ (1974) Propagation of internal waves in ocean with horizontally inhomogeneous density field. Fizika Atm i Okeana 10(5) (in Russian)

    Google Scholar 

  • Müller P, Liu X (2000a) Scattering of internal waves at finite topography in two dimensions. Part I: theory and case studies. J Phys Oceanogr 30:532–549

    Article  Google Scholar 

  • Müller P, Liu X (2000b) Scattering of internal waves at finite topography in two dimensions. Part II: spectral calculations and boundary mixing. J Phys Oceanogr 30:550–563

    Article  Google Scholar 

  • Osborne AR, Burch TL (1980) Internal solutions in the Andaman Sea. Science 208(4443):451–460

    Article  Google Scholar 

  • Ostrovsky LA (1978) Nonlinear internal waves in a rotating ocean. Oceanologiya 18(2):119–125 (in Russian)

    Google Scholar 

  • Pedlosky J (2003) Waves in the ocean and atmosphere. Introduction to wave dynamics. Springer, Berlin

    Book  Google Scholar 

  • Pelinovsky EN, Shavratsky SCh (1976) Propagation on nonlinear internal waves in an inhomogeneous ocean. Fizika Atm i Okeana 12:76–82 (in Russian)

    Google Scholar 

  • Pelinovsky EN, Talipowa TG, Stepanyants JA (1994) Modelling of nonlinear wave propagation in the horizontally inhomogeneous ocean. Fizika Atm i Okeana 30(1):79–83 (in Russian)

    Google Scholar 

  • Phillips OM (1966) The dynamics of the upper ocean. Cambridge University Press, Cambridge

    Google Scholar 

  • Robinson RM (1969) The effects of a vertical barrier on internal waves. Deep-Sea Res 16:421–429

    Google Scholar 

  • Sandström H (1969) Effect of topography on propagation of waves in stratified fluids. Deep-Sea Res 16:405–410

    Google Scholar 

  • Smyth NF, Holloway PE (1988) Hydraulic jamp and undular bore formation on a shelf break. J Phys Oceanogr 18:947–962

    Article  Google Scholar 

  • Sutherland B (2010) Internal gravity waves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Talipova T, Pelinovsky EN, Kouts T (1998) Kinematic characteristics of internal wave field in the Gotland deep of the Baltic Sea. Fizika Atm i Okeana 38:37–46 (in Russian)

    Google Scholar 

  • Thorpe SA (1987) On the reflection of a train of finite amplitude internal waves from a uniform slope. J Fluid Mech 178:279–302

    Article  Google Scholar 

  • Thorpe SA (1997) On the interactions of internal waves reflecting from slopes. J Phys Oceanogr 27:2072–2078

    Article  Google Scholar 

  • Thorpe SA (2005) The turbulent ocean. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vlasenko V, Hutter I (2002) Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J Phys Oceanogr 32:1779–1793

    Article  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    Google Scholar 

  • Wunsch C (1968) On the propagation of internal waves up a slope. Deep-Sea Res 15:251–258

    Google Scholar 

  • Wunsch C (1969) Progressive internal waves on slopes. J Fluid Mech 35(1):131–144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław R. Massel .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Massel, S.R. (2015). Waves in a Continuously Stratified Sea of Varying Depth. In: Internal Gravity Waves in the Shallow Seas. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-18908-6_4

Download citation

Publish with us

Policies and ethics