Skip to main content

Fundamentals of Ballooning Modes in Tokamak

  • Chapter
Frontiers in Fusion Research II
  • 1452 Accesses

Abstract

Tokamak flux surfaces are dominated by irrational surfaces, which brings the mathematical problem how to satisfy double periodicity in toroidal and poloidal angles for flute like perturbation expressed by the eikonal form. Ballooning transform is essential method to analyze 2D mode structure in toroidal geometry not only to ideal Ballooning mode, but also for high n toroidal drift waves and Alfven eigenmodes. Fundamentals of ballooning mode structure in toroidal plasma is discussed for the application to MHD instabilities and toroidal drift waves. After an introduction of ballooning transform from real geometry to covering space in section 6.1, the method to satisfy double periodicity flute like perturbation is discussed using the eikonal form in the flux coordinates using Poisson sum and its relation to translational symmetry in 6.2. The 2D hallooning transform and twisted radial Fourier transform are discussed in 6.3. Trapped and passing mode structures in 2D wave equation are discussed using the WKBJ formulation in 6.4. Poisson sum, Bloch theorem and WKBJ solutions are given as Columns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Brillouin, Comptes Rendus 183, 24 (1926)

    Google Scholar 

  2. J.W. Connor, R.J. Hastie, J.B. Taylor, Phys. Rev. Lett 40, 396 (1978)

    Article  MathSciNet  Google Scholar 

  3. J.W. Connor, R.J. Hastie, J.B. Taylor, Proc. Roy. Soc. Lond. A 42, 1 (1979)

    Article  MathSciNet  Google Scholar 

  4. J.W. Connor, J.B. Taylor, H.R. Wilson, Phys. Rev. Lett. 71, 1803 (1993)

    Article  Google Scholar 

  5. R.L. Dewar et al., PPPL-1587 (1979)

    Google Scholar 

  6. R. Dewar, J. Manickam, R.C. Grimm, M.S. Chance, Nucl. Fusion 21, 493 (1981)

    Article  Google Scholar 

  7. R.L. Dewar, A.H. Glasser, Phys. Fluids 26, 3038 (1983)

    Article  MATH  Google Scholar 

  8. R. Dewar, in Proceedings Workshop on Theory of Fusion Plasmas, Varenna, 1987, ed. by A. Bonderson, E. Sindoni, F. Troyon, 1988, p. 107

    Google Scholar 

  9. R. Dewar, Plasma Phys. Controlled Fusion 39, 453 (1997)

    Article  Google Scholar 

  10. M. Greenwald et al., Nucl. Fusion 28, 2199 (1988)

    Article  Google Scholar 

  11. R.D. Hazeltine, F.L. Waelbloeck, The Framework of Plasma Physics (Westview, Boulder, 2004)

    Google Scholar 

  12. W.W. Heidbrink, G.J. Sadler, Nucl. Fusion 34, 535 (1994)

    Article  Google Scholar 

  13. H. Jeffreys, Asymptotic Approximations (Oxford University Press, Oxford, 1962)

    MATH  Google Scholar 

  14. F. Jenko, Phys. Plasmas 7, 514 (2000)

    Article  Google Scholar 

  15. M. Kikuchi, M. Azumi, Rev. Mod. Phys. 84, 1807 (2012) (Review Article)

    Google Scholar 

  16. Y.B. Kim, Moment approach to neoclassical flows, currents and transport in auxiliary heated Tokamaks, Ph.D. thesis, Physics Department, University of Wisconsin (1988)

    Google Scholar 

  17. T. Kobayashi, A. Isayama, K. Yokokura et al., Nucl. Fusion 51, 103037 (2011)

    Article  Google Scholar 

  18. J.E. Kunzler, Rev. Mod. Phys. 33, 501 (1961)

    Article  Google Scholar 

  19. G.S. Lee, J. Kim, S.M. Hwang, C.S. Chang et al., Nucl. Fusion 40, 575 (2000)

    Article  Google Scholar 

  20. X. Litaudon, R. Arslanbekov, G.T. Hoang et al., Plasma Phys. Controlled Fusion 38, 1603 (1996)

    Article  Google Scholar 

  21. R.A. Moyer, G.R. Tynan, C. Holland, M.J. Burin et al., Phys. Rev. Lett. 87, 135001 (2001)

    Article  Google Scholar 

  22. H. Reimerdes, A.M. Garofalo, G.L. Jackson et al., Phys. Rev. Lett. 98, 055001 (2007)

    Article  Google Scholar 

  23. D.J. Rose, M. Clarke Jr., Plasmas and Controlled Fusion (MIT Press, Cambridge, 1961)

    MATH  Google Scholar 

  24. T. Taylor, Plasma Phys. Controlled Fusion 39, B47 (1997)

    Article  Google Scholar 

  25. E. Teller, Peaceful use of fusion, in Proceedings of 2nd UN International Conference on Peaceful Uses of Atomic Energy, vol. 31, Paper P/2410, 1958

    Google Scholar 

  26. J. Weiland, A.B. Jarmen, H. Nordman, Nucl. Fusion 29, 1810 (1989)

    Article  Google Scholar 

  27. R. White, Phys. Plasmas 20, 0422105 (2013)

    Google Scholar 

  28. R. White, Phys. Plasmas 20, 042116 (2013)

    Article  Google Scholar 

  29. M. Zarnstorff et al., Plasma physics and controlled nuclear fusion research 1988, vol. 1 (IAEA, Vienna, 1989), p. 183

    Google Scholar 

  30. W. Zhu, S.A. Sabbagh, R.E. Bell, J.M. Bialek et al., Phys. Rev. Lett. 96, 225002 (2006)

    Article  Google Scholar 

  31. H. Zushi, K. Nakamura, S. Itoh, K.N. Sato et al., Nucl. Fusion 39, 1955 (1999)

    Article  Google Scholar 

  32. H. Zushi, S. Itoh, K.N. Sato et al., Nucl. Fusion 40, 1183 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kikuchi, M., Azumi, M. (2015). Fundamentals of Ballooning Modes in Tokamak. In: Frontiers in Fusion Research II. Springer, Cham. https://doi.org/10.1007/978-3-319-18905-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18905-5_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18904-8

  • Online ISBN: 978-3-319-18905-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics