Skip to main content

Packing Optimization of Free-Form Objects in Engineering Design

  • Chapter
Optimized Packings with Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 105))

Abstract

Packing for engineering design involves the development and use of methods to determine the arrangement of a set of subsystems or components within some enclosure to achieve a set of objectives without violating spatial or performance constraints. Packing problems, also known as layout optimization problems are challenging because they are highly multimodal, are characterized by models that lack closed-form representations, and require expensive computational procedures. The time needed to resolve intersection calculations increases exponentially with the number of objects to be packed while the space available for the placement of these components becomes less and less available.

This paper presents a multiyear research effort targeting the development of computational tools for packing optimization problems which are encountered at different stages of engineering design with special interest in automotive design. Due to increasingly realistic engineering applications, the problems feature a rising level of complexity and therefore require optimization models and approaches with growing sophistication. To be relevant to automotive design, the packing problems account for the free shape of objects and consider either their compact packing within an envelope or their noncompact packing in the presence of multiple criteria used to evaluate system performance. The packing problems are represented by single or multiobjective optimization problems (MOPs) while the solution approaches rely on evolutionary algorithms due to the level of complexity that precludes development of effective exact methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray tracing. In: Eurographics ’87, pp. 3–10 (1987)

    Google Scholar 

  2. Burns, M.: Automated Fabrication. Prentice Hall, Upper Saddle River (1993)

    Google Scholar 

  3. Cagan, J., Degentesh, D., Yin, S.: A simulated annealing-based algorithm using hierarchical models for general three dimensional component layout. Comput. Aided Des. 30(10), 781–790 (1998)

    Article  MATH  Google Scholar 

  4. Coello Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl. Inf. Syst. 1(3), 269–308 (1999)

    Article  Google Scholar 

  5. Coello Coello, C.A., Van Veldhuizen, D.A., Lamonts, G.B.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  6. Cohen, J., Lin, M., Manocha, D., Ponamgi, K.: I-COLLIDE: An interactive and exact collision detection system for large-scaled environments. In: Proceedings of ACM International 3D Graphics Conference (1995)

    Google Scholar 

  7. Corcoran, A.: LibGA: Library of GA routines written in C (1993). http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/genetic/ga/systems/libga/

  8. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multi-objective optimization. In: Parallel Problem Solving from Nature, pp. 839–848. Springer, Berlin (2000)

    Google Scholar 

  9. Dandurand, B.: Mathematical optimization for engineering design problems. Ph.D. thesis, Clemson University, Clemson (2013)

    Google Scholar 

  10. Dandurand, B., Wiecek, M.M.: Distributed computation of Pareto sets. SIAM J. Optim. (in print)

    Google Scholar 

  11. Dandurand, B., Guarneri, P., Fadel, G., Wiecek, M.M.: Equitable multiobjective optimization applied to the design of a hybrid electric vehicle battery. ASME J. Mech. Des. 135(4), 041004 (2013)

    Article  Google Scholar 

  12. Dandurand, B., Guarneri, P., Fadel, G., Wiecek, M.M.: Bilevel multiobjective packaging optimization for automotive design. Struct. Multidiscip. Optim. 50(4), 663–682 (2014)

    Article  MathSciNet  Google Scholar 

  13. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  14. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inf. 26(4), 30–45 (1996)

    Google Scholar 

  16. Deb, K., Tiwari, S.: Omni-optimizer: A procedure for single and multi-objective optimization. In: Proceedings of the 3rd International Conference on Evolutionary Multi-criterion Optimization (EMO’2005). Lecture Notes on Computer Science, vol. 3410, pp. 41–65 (2005)

    Google Scholar 

  17. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  18. Deb, K., Mohan, M., Mishra, S.: Evaluating the \(\upepsilon\)-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evol. Comput. J. 13(4), 501–525 (2005)

    Article  Google Scholar 

  19. Dong, H.: Physics based shape morphing and packing for layout design. Ph.D. thesis, Clemson University, Clemson (2008)

    Google Scholar 

  20. Dong, H., Fadel, G., Guarneri, P.: Bi-level approach to vehicle component layout and shape morphing. ASME J. Mech. Des. 133(4), 041008 (2011)

    Article  Google Scholar 

  21. Tiwari, S., Dong, H., Fadel, G., Fenyes, P., Kloess, A.: A physically-based shape morphing algorithm for packing and layout applications. Int. J. Interact. Des. Manuf. 8(3), 171–185 (2014)

    Article  Google Scholar 

  22. Dowsland, K.A., Vaid, S., Dowsland, W.B.: An algorithm for polygon placement using a bottom-left strategy. Eur. J. Oper. Res. 141, 371–381 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  24. Eshelman, L.J.: The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Foundations of Genetic Algorithms 1 (FOGA-1), pp. 265–283 (1991)

    Google Scholar 

  25. Eskandari, H., Geiger, C.D., Lamont, G.B.: FastPGA: A dynamic population sizing approach for solving expensive multiobjective optimization problems. In: Evolutionary Multiobjective Optimization Conference (EMO-2007). Lecture Notes in Computer Science, vol. 4403, pp. 141–155. Springer, Berlin (2007)

    Google Scholar 

  26. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman, Boston (1989)

    MATH  Google Scholar 

  27. Gondipalle, S.: CFD analysis of the underhood of a car for packaging considerations. Master’s thesis, Clemson University, Clemson (2011)

    Google Scholar 

  28. Grignon, P.M.: Configuration design optimization method. Ph.D. thesis, Clemson University, Clemson (1999)

    Google Scholar 

  29. Grignon, P., Fadel, G.M.: A GA based configuration design optimization method. ASME J. Mech. Des. 126(1), 6–15 (2004)

    Google Scholar 

  30. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaption. In: Proceedings of the Third IEEE Interntational Conference on Evolutionary Computation, pp. 312–317. IEEE, New York (1996)

    Google Scholar 

  31. Ho, S.Y., Shu, L.S., Chen, J.H.: Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Trans. Evol. Comput. 8(6), 522–541 (2004)

    Article  Google Scholar 

  32. Holland, J.: Genetic algorithms and adaptation. In: Adaptive Control of Ill-Defined Systems. NATO Conference Series (1984)

    Book  Google Scholar 

  33. Hopper, E., Turton, B.C.H.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur. J. Oper. Res. 128, 34–57 (2001)

    Article  MATH  Google Scholar 

  34. Katragadda, R.T.: Predicting the thermal performance for the multiobjective vehicle underhood packing optimization. Master’s thesis, Clemson University, Clemson (2012)

    Google Scholar 

  35. Katragadda, R.T., Gondipalle, S.R., Guarneri, P., Fadel, G.M.: Predicting the thermal performance for the multi-objective vehicle underhood packing optimization problem. In: Proceedings of ASME DETC 2012. Paper DETC2012-71098 (2012)

    Google Scholar 

  36. Kostreva, M.M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations and multiple criteria analysis. Eur. J. Oper. Res. 158(2), 362–377 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin, M., Gottshalk, S.: Collision detection between geometric models: A survey. In: Proceedings of IMA Conference on Mathematics of Surfaces (1998)

    Google Scholar 

  38. Liu, D., Teng, H.: An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles. Eur. J. Oper. Res. 112, 413–420 (1999)

    Article  MATH  Google Scholar 

  39. Meagher, D.: Octree encoding: a new technique for the representation, manipulation and display of arbitrary 3-D objects by computer. Technical Report IPL-TR-80-111. Rensselaer Polytechnic Institute, Troy, NY (1980)

    Google Scholar 

  40. Moller, T.A.: Fast 3D triangle-BOC overlap testing. J. Graph. Tools 6(1), 29–33 (2001)

    Article  Google Scholar 

  41. Redon, S., Lin, M.: A fast method for local penetration depth computation. J. Graph. Tools 11(2), 37–50 (2006)

    Article  Google Scholar 

  42. SAE: SAE Standard J1100. Motor Vehicle Dimensions (2005)

    Google Scholar 

  43. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    Google Scholar 

  44. Syswerda, G.: Schedule optimization using genetic algorithms. In: Davis, L. (ed.) Handbook of Genetic Algorithms 1, pp. 332–349. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  45. Szykman, S., Cagan, J.: A simulated annealing approach to three-dimensional component packing. ASME J. Mech. Des. 117(2A), 308–314 (1995)

    Article  Google Scholar 

  46. Szykman, S., Cagan, J.: Constrained three dimensional component layout using simulated annealing. ASME J. Mech. Des. 119(1), 28–35 (1996)

    Article  Google Scholar 

  47. Teng, H.F., Sun, S.L., Liu, D.Q., Li, Y.Z.: Layout optimization for the objects located within a rotating vessel – a three-dimensional packing problem with behavioral constraints. Comput. Oper. Res. 28, 521–535 (2001)

    Article  MATH  Google Scholar 

  48. Tiwari, S., Fadel, G., Fenyes, P.: A fast and efficient compact packing algorithm for free-form objects. In: ASME 2008 IDETC & CIE Conference, New York (2008)

    Google Scholar 

  49. Tiwari, S., Koch, P., Fadel, G.M., Deb, K.: AMGA: An archive-based micro genetic algorithm for multi-objective optimization. In: GECCO’08 Conference Proceedings (2008)

    Google Scholar 

  50. Tiwari, S., Fadel, G.M., Koch, P., Deb, K.: Performance assessment of the hybrid archive-based micro genetic algorithm (AMGA) on the CEC09 test problems. CEC09 MOEA Competition (2009). Nominated for best paper award

    Google Scholar 

  51. Tiwari, S., Fadel, G., Fenyes, P.: A fast and efficient compact packing algorithm for the SAE and ISO luggage packing problems. J. Comput. Inf. Sci. Eng. 10(2), 021010 (2010)

    Article  Google Scholar 

  52. Tiwari, S., Fadel, G.M., Deb, K.: AMGA2: Improving the performance of the archive-based micro genetic algorithm for multi-objective optimization. J. Eng. Optim. 43(4), 377–401 (2011)

    Article  Google Scholar 

  53. Tiwari, S., Fadel, G., Fenyes, P., Kloess, A.: An envelop generation algorithm for packing and layout applications. Int. J. Interact. Des. Manuf. 8(3), 171–185 (2014)

    Article  Google Scholar 

  54. Vavak, F., Fogarty, T.C.: Comparison of steady state and generational genetic algorithms for use in nonstationary environments. In: Proceedings of IEEE Conference on Evolutionary Computation, Nagoya, pp. 192–195 (1996)

    Google Scholar 

  55. Watanabe, S., Hiroyasu, T., Miki, M.: NCGA: Neighborhood cultivation genetic algorithm for multi-objective optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 458–465 (2002)

    Google Scholar 

  56. Whitley, D.: The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 116–121 (1989)

    Google Scholar 

  57. Whitley, D.: Cellular genetic algorithms. In: 5th International Conference on Genetic Algorithms, p. 658 (1993)

    Google Scholar 

  58. Yi, M.: Packing optimization of engineering problems. Ph.D. thesis, Clemson University, Clemson (2005)

    Google Scholar 

  59. Yi, M., Blouin, V., Fadel, G.M.: Multi-objective configuration optimization with vehicle dynamics applied to midsize truck design. In: ASME 2003 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago (2003)

    Google Scholar 

  60. Yi, M., Fadel, G.M., Gantovnik, V.B.: Vehicle configuration design with a packing genetic algorithm. Int. J. Heavy Veh. Syst. 15(2/3/4), 433–448 (2008)

    Google Scholar 

  61. Yin, S., Cagan, J.: An extended pattern search algorithm for three-dimensional component layout. ASME J. Mech. Des. 122, 102–108 (2000)

    Article  Google Scholar 

  62. Zhoua, A., Qu, B.-Y., Li, H., Zhaob, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  63. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001 Conference, pp. 95–100 (2001)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Automotive Research Center (ARC), a US Army Center of Excellence for modeling and simulation of ground vehicles, and by the National Science Foundation, grant number CMMI-1129969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Wiecek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fadel, G.M., Wiecek, M.M. (2015). Packing Optimization of Free-Form Objects in Engineering Design. In: Fasano, G., Pintér, J. (eds) Optimized Packings with Applications. Springer Optimization and Its Applications, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-18899-7_3

Download citation

Publish with us

Policies and ethics