Skip to main content

Graph Coloring Models and Metaheuristics for Packing Applications

  • Chapter
Optimized Packings with Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 105))

  • 1129 Accesses

Abstract

On the one hand, in the famous graph coloring problem, each vertex of the considered graph has to get a single color. If two vertices are connected with an edge, then their colors have to be different. The goal consists in coloring the graph with the smallest number of colors. On the other hand, consider the packing problem where items have to be loaded in a container. For each item, we have to decide in which container it will be assigned. As some pairs of items are incompatible, they cannot be loaded in the same container. The goal is to load all the items in a minimum number of containers. Even if the correspondence between these two problems is obvious (a vertex is an item, a color is a container, and an edge represents an incompatibility), there is no obvious bridge between the packing and the graph coloring literatures. In this chapter, some packing problems will be modeled and solved with graph coloring models and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarts, E.H.I., Laarhoven, P.J.M.: Statistical cooling: a general approach to combinatorial optimization problems. Philips J. Res. 40, 193–226 (1985)

    MathSciNet  Google Scholar 

  2. Bloechliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35, 960–975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  4. Bortfeldt, A., Gehring, H., Mack, D.: A parallel tabu search algorithm for solving the container loading problem. Parallel Comput. 29(5), 641–662 (2003)

    Article  Google Scholar 

  5. Calegari, P., Coray, C., Hertz, A., Kobler, D., Kuonen, P.: A taxonomy of evolutionary algorithms in combinatorial optimization. J. Heuristics 5, 145–158 (1999)

    Article  MATH  Google Scholar 

  6. Dorigo, M., Stuetzle, T.: The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 251–285. Springer US (2003)

    Google Scholar 

  7. Faigle, U., Kern, W.: Some convergence results for probabilistic tabu search. ORSA J. Comput. 4, 32–37 (1992)

    Article  MATH  Google Scholar 

  8. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the graph coloring problem. Discret. Appl. Math. 156, 267–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    Google Scholar 

  11. Gehring, H., Bortfeldt, A.: A parallel genetic algorithm for solving the container loading problem. Int. Trans. Oper. Res. 9(4), 497–511 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gendreau, M., Potvin, J.-Y.: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146. Springer, Berlin (2010)

    Google Scholar 

  13. Gendreau, M., Iori, M., Laporte, G., Martello, S.: A tabu search algorithm for a routing and container loading problem. Transp. Sci. 40(3), 342–350 (2006)

    Article  Google Scholar 

  14. Glover, F.: Future paths for integer programming and linkage to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Glover, F., Hanafi, S.: Tabu search and finite convergence. Discret. Appl. Math. 119(1–2), 3–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms. In: Genetic Algorithms and Simulated Annealing, pp. 42–60. Morgan Kaufmann, Los Altos (1987)

    Google Scholar 

  17. Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13, 311–329 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hertz, A., Zufferey, N.: Vertex coloring using ant colonies. In: Artificial Ants. Iste & Wiley, London (2010)

    Google Scholar 

  20. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discret. Appl. Math. 156, 2551–2560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, Z., Hao, J.-K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203, 241–250 (2010)

    Article  MathSciNet  Google Scholar 

  22. Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorithm for the container loading problem. Int. Trans. Oper. Res. 11(5), 511–533 (2004)

    Article  MATH  Google Scholar 

  23. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS J. Comput. 20(2), 302–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meuwly, F.-X., Ries, B., Zufferey, N.: Solution methods for a scheduling problem with incompatibility and precedence constraints. Algorithmic Oper. Res. 5(2), 75–85 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moura, A., Oliveira, J.F.: A GRASP approach to the container-loading problem. Intell. Syst. 20(4), 50–57 (2005)

    Article  Google Scholar 

  28. Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63, 513–623 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pisinger, D.: Heuristics for the container loading problem. Eur. J. Oper. Res. 141(2), 382–392 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Plumettaz, M., Schindl, D., Zufferey, N.: Ant local search and its efficient adaptation to graph colouring. J. Oper. Res. Soc. 61, 819–826 (2010)

    Article  MATH  Google Scholar 

  31. Taillard, E.D., Gambardella, L.M., Gendreau, M., Potvin, J.-Y.: Adaptive memory programming: a unified view of metaheuristics. Eur. J. Oper. Res. 135, 1–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Talbi, E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)

    Article  Google Scholar 

  33. Zhang, D., Peng, Y., Leung, S.C.H.: A heuristic block-loading algorithm based on multi-layer search for the container loading problem. Comput. Oper. Res. 39(10), 2267–2276 (2012)

    Article  Google Scholar 

  34. Zufferey, N.: Metaheuristics: some principles for an efficient design. Comput. Technol. Appl. 3(6), 446–462 (2012)

    Google Scholar 

  35. Zufferey, N.: Models and methods in graph coloration for various production problems. In: Metaheuristics for Production Scheduling. Hermès – Lavoisier, Paris (2013)

    Book  Google Scholar 

  36. Zufferey, N., Amstutz, P., Giaccari, P.: Graph colouring approaches for a satellite range scheduling problem. J. Sched. 11(4), 263–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zufferey, N., Labarthe, O., Schindl, D.: Heuristics for a project management problem with incompatibility and assignment costs. Comput. Optim. Appl. 51, 1231–1252 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Zufferey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zufferey, N. (2015). Graph Coloring Models and Metaheuristics for Packing Applications. In: Fasano, G., Pintér, J. (eds) Optimized Packings with Applications. Springer Optimization and Its Applications, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-18899-7_14

Download citation

Publish with us

Policies and ethics