Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1654 Accesses

Abstract

Thanks to the technology scaling, the cut-off frequencies of MOS transistors reach an f T of 250 GHz and f MAX of 300 GHz in 40-nm CMOS technology. On top of offering high-speed transistors, the advanced CMOS technology usually provides several RF and mm-Wave friendly options, such as thick top metals and the silicon substrate with resistivity of 10 \(\Omega\) cm . All these features enable the integration of the complete mm-Wave system on a single CMOS die.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The bias current density that gives the peak f T or f MAX in this technology is above 0.2 mA/μm. A current density of 0.1 mA/μm is chosen in the PA designs of this work for high PA efficiency.

  2. 2.

    Different RC extraction tools have been used in this design, including Synopsys Star-RCXT and Mentor Graphics Calibre PEX.

  3. 3.

    Vias are merged in EM simulations to reduce the simulation time.

  4. 4.

    As 1 neper (Np) corresponds to a power ratio of e 2, the conversion between nepers and decibels is 1 NP \(= 10\log e^{2} =\) 8.686 dB.

References

  1. B. Heydari, M. Bohsali, E. Adabi, A. Niknejad, Millimeter-wave devices and circuit blocks up to 104 GHz in 90 nm cmos. IEEE J. Solid State Circuits 42, 2893–2903 (2007)

    Article  Google Scholar 

  2. B. Razavi, R.-H. Yan, K. Lee, Impact of distributed gate resistance on the performance of mos devices. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 41, 750–754 (1994)

    Article  Google Scholar 

  3. C. Liang, B. Razavi, A layout technique for millimeter-wave pa transistors, in 2011 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 1–4, June 2011

    Google Scholar 

  4. U. Gogineni, H. Li, J. Del Alamo, S. Sweeney, J. Wang, B. Jagannathan, Effect of substrate contact shape and placement on rf characteristics of 45 nm low power cmos devices. IEEE J. Solid State Circuits 45, 998–1006 (2010)

    Article  Google Scholar 

  5. W. Chan, J. Long, A 58–65 GHz neutralized cmos power amplifier with pae above 10% at 1-v supply. IEEE J. Solid State Circuits 45(3), 554–564 (2010)

    Article  MathSciNet  Google Scholar 

  6. D. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2009)

    Google Scholar 

  7. D. Chowdhury, P. Reynaert, A. Niknejad, A 60GHz 1v + 12.3dbm transformer-coupled wideband pa in 90nm cmos, in 2008 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC 2008), pp. 560–635, February 2008

    Google Scholar 

  8. T. Yao, M. Gordon, K. Tang, K. Yau, M.-T. Yang, P. Schvan, S. Voinigescu, Algorithmic design of cmos lnas and pas for 60-GHz radio. IEEE J. Solid State Circuits 42, 1044–1057 (2007)

    Article  Google Scholar 

  9. A. Niknejad, D. Chowdhury, J. Chen, Design of cmos power amplifiers. IEEE Trans. Microwave Theory Tech. 60, 1784–1796 (2012)

    Article  Google Scholar 

  10. M. Danesh, J. Long, Differentially driven symmetric microstrip inductors. IEEE Trans. Microwave Theory Tech. 50, 332–341 (2002)

    Article  Google Scholar 

  11. C. Doan, S. Emami, A. Niknejad, R. Brodersen, Millimeter-wave cmos design. IEEE J. Solid State Circuits 40, 144–155 (2005)

    Article  Google Scholar 

  12. D. Zhao, P. Reynaert, 14.1 a 0.9v 20.9dbm 22.3%-pae e-band power amplifier with broadband parallel-series power combiner in 40nm cmos, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 248–249, February 2014

    Google Scholar 

  13. T. Cheung, J. Long, Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits. IEEE J. Solid State Circuits 41, 1183–1200 (2006)

    Article  Google Scholar 

  14. W. Eisenstadt, Y. Eo, S-parameter-based ic interconnect transmission line characterization. IEEE Trans. Compon. Hybrids Manuf. Technol. 15, 483–490 (1992)

    Article  Google Scholar 

  15. T. LaRocca, J.-C. Liu, M.-C. Chang, 60 GHz cmos amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design. IEEE J. Solid State Circuits 44(5), 1425–1435 (2009)

    Article  Google Scholar 

  16. D. Zhao, S. Kulkarni, P. Reynaert, A 60GHz outphasing transmitter in 40nm cmos with 15.6dbm output power, in 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 170–172

    Google Scholar 

  17. I. Aoki, S. Kee, D. Rutledge, A. Hajimiri, Distributed active transformer-a new power-combining and impedance-transformation technique. IEEE Trans. Microwave Theory Tech. 50, 316–331 (2002)

    Article  Google Scholar 

  18. J. Long, Monolithic transformers for silicon rf ic design. IEEE J. Solid State Circuits 35, 1368–1382 (2000)

    Article  Google Scholar 

  19. T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  20. L. Nan, K. Mouthaan, Y.-Z. Xiong, J. Shi, S. Rustagi, B.-L. Ooi, Experimental characterization of the effect of metal dummy fills on spiral inductors, in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 307–310, June 2007

    Google Scholar 

  21. A. Tsuchiya, H. Onodera, Patterned floating dummy fill for on-chip spiral inductor considering the effect of dummy fill. IEEE Trans. Microwave Theory Tech. 56, 3217–3222 (2008)

    Article  Google Scholar 

  22. K. Okada, N. Li, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, S. Ito, W. Chaivipas, R. Minami, T. Yamaguchi, Y. Takeuchi, H. Yamagishi, M. Noda, A. Matsuzawa, A 60-GHz 16qam/8psk/qpsk/bpsk direct-conversion transceiver for ieee802.15.3c. IEEE Trans. Solid State Circuits 46, 2988–3004 (2011)

    Google Scholar 

  23. Agilent, ADS momentum user manual (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, D., Reynaert, P. (2015). mm-Wave Active and Passive Devices. In: CMOS 60-GHz and E-band Power Amplifiers and Transmitters. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-18839-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18839-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18838-6

  • Online ISBN: 978-3-319-18839-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics