Advertisement

A Domain Decomposition Approach in the Electrocardiography Inverse Problem

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)

Abstract

The mostly used mathematical formulation of the inverse problem in electrocardiography is based on a least method using a transfer matrix that maps the electrical potential on the heart to the body surface potential (BSP). This mathematical model is ill based and a lot of works have been concentrating on the regularization term without thinking of reformulating the problem itself. We propose in this study to solve the inverse problem based on a domain decomposition technique on a fictitious mirror-like boundary conditions. We conduct BSP simulations to produce synthetic data and use it to evaluate the accuracy of the inverse problem solution.

References

  1. 1.
    F. Ben Belgacem, H. El Fekih, On cauchy’s problem: I. A variational steklov–poincaré theory. Inverse Prob. 21(6), 1915 (2005)Google Scholar
  2. 2.
    M. Boulakia, S. Cazeau, M.A. Fernández, J.F. Gerbeau, N. Zemzemi, Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38(3), 1071–1097 (2010) [ISSN 0090-6964]Google Scholar
  3. 3.
    J. Clements, J. Nenonen, P.K.J. Li, B.M. Horacek, Acivation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng. 2(32), 984–990 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Ghosh, Y. Rudy, Application of l1-norm regularization to epicardial potential solution of the inverse electrocardiography problem. Ann. Biomed. Eng. 37(5), 902–912 (2009)CrossRefGoogle Scholar
  5. 5.
    B. Irons, R.C. Tuck, A version of the aitken accelerator for computer implementation. Int. J. Numer. Methods Eng. 1, 275–277 (1969)CrossRefMATHGoogle Scholar
  6. 6.
    G.T. Lines, M.L. Buist, P. Grottum, A.J. Pullan, J. Sundnes, A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Comput. Visual. Sci. 5(4), 215–239 (2003)CrossRefMATHGoogle Scholar
  7. 7.
    M. Potse, B. Dubé, M. Gulrajani, ECG simulations with realistic human membrane, heart, and torso models, in Proceedings of the 25th Annual Intemational Conference of the IEEE EMBS (2003), pp. 70–73Google Scholar
  8. 8.
    A.J. Pullan, M.L. Buist, L.K. Cheng, Mathematically Modelling the Electrical Activity of the Heart. From Cell to Body Surface and Back Again (World Scientific, Singapore, 2005)Google Scholar
  9. 9.
    J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical Activity in the Heart (Springer, Heidelberg, 2006)MATHGoogle Scholar
  10. 10.
    K. Ten Tusscher, A.V. Panfilov, Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys. Med. Biol. 51, 6141 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Tung, A bi-domain model for describing ischemic myocardial D–C potentials. Ph.D. Thesis, MIT, 1978Google Scholar
  12. 12.
    N. Zemzemi, Étude théorique et numérique de l’activité électrique du cœur: Applications aux électrocardiogrammes. Ph.D. Thesis, Université Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00470375/en/
  13. 13.
    N. Zemzemi, A steklov-poincaré approach to solve the inverse problem in electrocardiography, in Computing in Cardiology Conference (CinC), 2013 (IEEE, New York, 2013), pp. 703–706Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.INRIA Bordeaux Sud-OuestCarmen teamTalenceFrance
  2. 2.Electrophysiology and Heart Modeling Institute (IHU LIRYC)BordeauxFrance

Personalised recommendations