Skip to main content

Schwarz Methods for Second Order Maxwell Equations in 3D with Coefficient Jumps

  • Conference paper

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 104)

Abstract

We study non-overlapping Schwarz Methods for solving second order time-harmonic 3D Maxwell equations in heterogeneous media. Choosing the interfaces between the subdomains to be aligned with the discontinuities in the coefficients, we show for a model problem that while the classical Schwarz method is not convergent, optimized transmission conditions dependent on the discontinuities of the coefficients lead to convergent methods. We prove asymptotically that the resulting methods converge in certain cases independently of the mesh parameter, and convergence can even become better as the coefficient jumps increase.

Keywords

  • Maxwell Equation
  • Transmission Condition
  • Convergence Factor
  • Applied Current Density
  • Mesh Parameter

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Alonso-Rodriguez, L. Gerardo-Giorda, New nonoverlapping domain decomposition methods for the harmonic Maxwell system. SIAM J. Sci. Comput. 28(1), 102–122 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. P. Chevalier, F. Nataf, An OO2 (Optimized Order 2) method for the Helmholtz and Maxwell equations, in 10th International Conference on Domain Decomposition Methods in Science and in Engineering (AMS, Providence, 1997), pp. 400–407

    Google Scholar 

  3. B. Després, Décomposition de domaine et problème de Helmholtz. C. R. Acad. Sci. Paris 1(6), 313–316 (1990)

    MATH  Google Scholar 

  4. B. Després, P. Joly, J. Roberts, A domain decomposition method for the harmonic Maxwell equations, in Iterative Methods in Linear Algebra (North-Holland, Amsterdam, 1992), pp. 475–484

    MATH  Google Scholar 

  5. V. Dolean, M.J. Gander, Why classical Schwarz methods applied to hyperbolic systems can converge even without overlap, in Domain Decomposition Methods in Science and Engineering XVII. Lect. Notes Comput. Sci. Eng., vol. 60 (Springer, Heidelberg, 2007), pp. 467–475

    Google Scholar 

  6. V. Dolean, S. Lanteri, R. Perrussel, A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods. J. Comput. Phys. 227(3), 2044–2072 (2008a)

    Google Scholar 

  7. V. Dolean, S. Lanteri, R. Perrussel, Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method. IEEE. Trans. Magn. 44(6), 954–957 (2008b)

    Google Scholar 

  8. V. Dolean, L. Gerardo-Giorda, M. Gander, Optimized Schwarz methods for Maxwell equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. V. Dolean, M. El Bouajaji, M.J. Gander, S. Lanteri, Optimized Schwarz methods for Maxwell’s equations with non-zero electric conductivity, in Domain Decomposition Methods in Science and Engineering XIX. Lect. Notes Comput. Sci. Eng., vol. 78 (Springer, Heidelberg, 2011a), pp. 269–276

    Google Scholar 

  10. V. Dolean, M. El Bouajaji, M.J. Gander, S. Lanteri, R. Perrussel, Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains, in Domain Decomposition Methods in Science and Engineering XIX, Lect. Notes Comput. Sci. Eng., vol. 78 (Springer, Heidelberg, 2011b), pp. 15–26

    Google Scholar 

  11. V. Dolean, M.J. Gander, E. Veneros, Optimized Schwarz methods for Maxwell equations with discontinuous coefficients, in Domain Decomposition Methods in Science and Engineering XXI, Lect. Notes Comput. Sci. Eng., (Springer, 2013), pp. 517–524

    Google Scholar 

  12. O. Dubois, Optimized Schwarz methods for the advection-diffusion equation and for problems with discontinuous coefficients. Ph.D. thesis, McGill University (2007)

    Google Scholar 

  13. M. El Bouajaji, V. Dolean, M.J. Gander, S. Lanteri, Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 34(4), A2048–A2071 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. M.J. Gander, F. Magoulès, F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. M.J. Gander, L. Halpern, F. Magoulès, An optimized Schwarz method with two-sided robin transmission conditions for the Helmholtz equation. Int. J. Numer. Methods Fluids 55(2), 163–175 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Z. Peng, J.F. Lee, Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics. J. Comput. Phys. 229(16), 5615–5629 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Z. Peng, V. Rawat, J.F. Lee, One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 229(4), 1181–1197 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Veneros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dolean, V., Gander, M.J., Veneros, E. (2016). Schwarz Methods for Second Order Maxwell Equations in 3D with Coefficient Jumps. In: Dickopf, T., Gander, M., Halpern, L., Krause, R., Pavarino, L. (eds) Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-18827-0_48

Download citation