Skip to main content

Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients

  • Conference paper
Domain Decomposition Methods in Science and Engineering XXII

Abstract

The very rapidly increasing number of cores in state-of-the-art supercomputers fuels both the need for and the interest in novel numerical algorithms inherently designed to feature concurrency. In addition to the mature field of space-parallel approaches (e.g. domain decomposition techniques), time-parallel methods that allow concurrency along the temporal dimension are now an increasingly active field of research, although first ideas, like in [12], go back several decades. A prominent and widely studied algorithm in this area is Parareal, introduced in [10], which has the advantage that one can couple and reuse classical time-stepping schemes in an iterative fashion to parallelize in time. However, there also exist a number of other approaches, e.g. the “parallel implicit time algorithm” (PITA) from [5], the “parallel full approximation scheme in space and time” (PFASST) from [4] or “revisionist integral deferred corrections” (RIDC) from [3] to name a few. Parareal in particular and temporal parallelism in general has been considered early as an addition to spatial parallelism in order to extend strong scaling limits, see [11]. Efficacy of this approach in large-scale parallel simulations on hundreds of thousands of cores has been demonstrated for the PFASST algorithm in [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Amodio, L. Brugnano, Parallel solution in time of odes: some achievements and perspectives. Appl. Numer. Math. 59(3–4), 424–435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential equations, in Domain Decomposition Methods in Science and Engineering, ed. by R. Kornhuber et al. Lecture Notes in Computational Science and Engineering, vol. 40 (Springer, Berlin, 2005), pp. 426–432

    Google Scholar 

  3. A.J. Christlieb, C.B. Macdonald, B.W. Ong, Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Emmett, M.L. Minion, Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58(9), 1397–1434 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Friedhoff, R.D. Falgout, T.V. Kolev, S. MacLachlan, J.B. Schroder, A multigrid-in-time algorithm for solving evolution equations in parallel, in Sixteenth Copper Mountain Conference on Multigrid Methods, Copper Mountain, 17–22 March 2013

    Google Scholar 

  7. M. Gander, E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in Domain Decomposition Methods in Science and Engineering, ed. by U. Langer, O. Widlund, D. Keyes. Lecture Notes in Computational Science and Engineering, vol. 60 (Springer, Berlin/Heidelberg, 2008), pp. 45–56

    Google Scholar 

  8. M. Gander, M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for linear problems. ESAIM Proc. 25, 114–129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. M.J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-L. Lions, Y. Maday, G. Turinici, A “parareal” in time discretization of PDE’s. C. R. Acad. Sci. Ser. I Math. 332, 661–668 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Y. Maday, G. Turinici, The parareal in time iterative solver: a further direction to parallel implementation, in Domain Decomposition Methods in Science and Engineering, ed. by R. Kornhuber et al. Lecture Notes in Computational Science and Engineering, vol. 40 (Springer, Berlin, 2005), pp. 441–448

    Google Scholar 

  12. J. Nievergelt, Parallel methods for integrating ordinary differential equations. Commun. ACM 7(12), 731–733 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Ruprecht, R. Krause, Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59, 72–83 (2012)

    Article  MathSciNet  Google Scholar 

  14. R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, P. Gibbon, A massively space-time parallel N-body solver, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12 (IEEE Computer Society, Los Alamitos, 2012), pp. 92:1–92:11

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNSF) under the lead agency agreement through the project “ExaSolvers” within the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) of the Deutsche Forschungsgemeinschaft (DFG). The authors thankfully acknowledge support from Achim Schädle, who provided parts of the used code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ruprecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ruprecht, D., Speck, R., Krause, R. (2016). Parareal for Diffusion Problems with Space- and Time-Dependent Coefficients. In: Dickopf, T., Gander, M., Halpern, L., Krause, R., Pavarino, L. (eds) Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-18827-0_37

Download citation

Publish with us

Policies and ethics