Skip to main content

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 15))

  • 685 Accesses

Abstract

Pegmatitic rocks are not randomly distributed across the Variscan/Hercynian basement in Central Europe. The evolution of pegmatites s.l. in the course of a complex orogeny of Meso-Europe took rather long, from the Devonian (419 Ma) through the Permian (252 Ma). In terms of structural geology and geodynamics, pegmatitic deposits primarily occur in ensialic Variscan-type orogens (calc-alkaline) with a thickened crust and a preponderance of thrusting and nappe stacking. In Rift-type settings (alkaline) a strong subcrustal impact is evident and as reactivated/reworked pseudopegmatites in Alpine-type orogens (calc-alkaline) these deposits developed during the initial stages when the crustal section was still rather thick. Both types pertain to the marginal ensimatic settings. They left their hallmarks to some extent also within the Central European Variscides and at its southern edge in the Alpine-Carpathian Orogen. The geodynamic units subjected to very-low-grade- to low-grade stage metamorphism at the margin of the Central European Variscides are barren with regard to pegmatites and aplites. Pegmatoids with minor B-(Li)-P-REE-U-Be mineralization occur along a suture zone extending across the present-day continents. It resulted from the late Variscan closure of the Rheic Ocean between Gondwana and Laurussia with remnants of an arc-related plutonism. Within allochthonous metamorphic complexes and nappes barren feldspar-quartz pegmatoids plus metapegmatites developed. Further south another part of this former coherent nappe also contains a small Be-Nb-P mineralization. Within the Subfluence zone, marked by continent-continent collision and thickening of the crust pegmatite, granite- pegmatite (miarolitic), pegmatite-aplite and pegmatoid abundant in B, Be, F, Li, Sn, U, P and As are encountered. Heading further to the core zone of the Variscan orogen, strong diapthoresis and shearing in the contact zone between the Saxothuringian and Moldanubian zones sensu lato favored the emplacement of pegmatite and aplite enriched in B, P, Be, Nb, As, Zr and F. High grade metamorphic rocks in an autochthonous position with a protolith mainly of Proterozoic age exist in the core zone. At the margin they are overthrusted onto adjacent geodynamic units and penetrated by multiple intrusions. The Hagendorf-Pleystein Pegmatite Province is located near the root zone for the nappe complexes thrusted onto the north-western geodynamic realms. Pegmatites and aplites with minor pegmatoids of the Hagendorf-Pleystein Pegmatite Province show the most varied concentration of rare elements in pegmatitic and aplitic rocks in this crustal section (B-P-REE-Nb/Ta-Li-Sc-Zn-Be). In some parts in core zone pegmatites can also be observed associated with skarns. Variscan lithologies were incorporated into the Alpine orogen and reactivated during the Alpine orogeny at the southern edge of the Meso-Europe. They contain granitic pegmatites, meta-pegmatites, pegmatoids and pseudo-pegmatites (B-Be-P-Nb-U-F-As-Li-Sn-REE-U). By quality this element assemblage is not very much different from that of the neighboring Variscan parent rocks. The suite of pegmatitic and aplitic mineral deposits is associated with mineral deposits of non-pegmatitic origin. They include thrustbound deposits (Au-As-Sb-(Hg)-Fe-Cu-Pb-Zn), plutonic/granite-related deposits (Sn-W-Mo-Pb-Ag-Zn-(In)-Cu-U), and unconformity-related (U-Pb-Zn-F-Ba). While the deposits can at least in parts structurally and compositionally related to the various types of pegmatites and aplites, stratabound deposits are mainly marker deposits for geodynamic units prone to aplitic or pegmatitic rocks in an ensialic orogen (SMS > > VM FeS-Cu-Zn, SEDEX Fe deposits, black-shale –hosted U-Cu-Mo-Sb-Zn-REE (low-grade-large-tonnage) and graphite). As an exception from this rule, the two last-mentioned mineralization with organic compounds can be considered (see geophysical surveys).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdakhmanov K, Zhautikov T, Kulishkin H, Poletaev A (1997) Field trip in Kazakhstan. In: Bekzanov GR, Dudich E, Gaál G, Jenchuraeva RJ (eds) Paleozoic granite-related Au, Cu, Mo, W, REE deposits and epithermal gold deposits, IUGS/UNESCO Deposit Modeling Program, workshop, Kazakhstan and Kyrgyzstan, Budapest, pp 65–80, 31 August–14 September 1997

    Google Scholar 

  • Achstetter M (2007) Aus Hornberg im Schwarzwald: Aquamarin in Edelsteinqualität und weitere Neufunde. Lapis 32:13–21

    Google Scholar 

  • Ackerman L, Zachariáš J, Pudilová M (2007) P–T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. Int J Earth Sci 96:623–638

    Article  Google Scholar 

  • Aichler J, Fojt B, Vaněček M (1995) Metallogenesis of the [Moravo Silesian zone]. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 512–517

    Google Scholar 

  • Aleksandrowski P, Mazur S (2002) Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, the Bohemian massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, Geological Society special publication, 201. Geological Society, London, pp 237–277

    Google Scholar 

  • Aleksandrowski P, Kryza R, Mazur S, Zaba J (1997) Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geol Mag 133:727–739

    Article  Google Scholar 

  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, calc alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73

    Article  Google Scholar 

  • Anthes G, Reischmann T (1996) Geochronologie und Isotopengeochemie der NE Mitteldeutschen Kristallinschwelle. Terra Nostra 96:9–10

    Google Scholar 

  • Awdankiewicz M, Kryza R, Szczepara N (2013) Timing of post-collisional volcanism in the eastern part of the Variscan Belt: constraints from SHRIMP zircon dating of Permian rhyolites in the North-Sudetic Basin (SW Poland). Geol Mag 151:611–628

    Article  Google Scholar 

  • Bartholomew MJ, Whitaker AE (2010) The Alleghanian deformational sequence at the foreland junction of the Central and Southern Appalachians. In: Tollo RP, Bartholomew MJ, Hibbard JP, Karabinos PM (eds) From Rodinia to Pangea: the lithotectonic record of the Appalachian Region, vol GSA Memoir, 206. Geological Society of America, Boulder, pp 431–454

    Chapter  Google Scholar 

  • Baumann L (1979) Some aspects of mineral deposit formation and the metallogeny of Central Europe. Verhandlungen der Bundesanstalt Wien 1978:205–220

    Google Scholar 

  • Baumann L, Kölbel B, Kraft S, Lächelt J, Rentzsch J, Schmidt K (1986) German democratic republic. In: Dunning FW, Evans AM (eds) Mineral deposits of Europe, vol. 3 Central Europe. IMM & Mineralogical Society, London, pp 303–329

    Google Scholar 

  • Baumann L, Kuschka E, Seifert TH (2000) Lagerstätten des Erzgebirges. Enke im Thieme Verlag, Stuttgart, pp 1–300

    Google Scholar 

  • Bederke E (1924) Das Devon in Schlesien und das Alter Sudetenfaltung. Fortschritte der Geologie und Paläontologie 7:1–55

    Google Scholar 

  • Behr HJ, Grosse S, Heinrichs T, Wolf U (1989) A reinterpretation of the gravity field in the surroundings of the KTB drill site-implications for the granite plutonism and terrane tectonic in the Variscan. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program (KTB). Springer, Berlin, pp 501–525

    Chapter  Google Scholar 

  • Bernard JH (1980) Paragenetic units of the European Variscan megazone. Freiberger Forschungshefte C 354:55–117

    Google Scholar 

  • Besang C, Harre W, Kreuzer H, Lenz H, Müller P, Wendt I (1976) Radiometrische Datierung, geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geol Jahrb E 8:3–71

    Google Scholar 

  • Blümel P (1986) Metamoprhic processes in the Variscan crust of the central segment. In: Freeman R, Mueller S, Giese P (eds) Proceedings of the 3rd EGT workshop. European Science Foundation, Bad Honef, pp 149–155

    Google Scholar 

  • Boiron MC, Barakat A, Cathelineau M, Banks DA, Durisova J, Moravek P (2001) Geometry and P-V-T-X conditions of microfissural ore fluid migration: the Mokrsko gold deposit (Bohemia). Chem Geol 173:207–225

    Article  Google Scholar 

  • Bottke H (1963) Zur Kenntnis der dichten Roteisenerz aus Eisenerzlagerstätten des Lahn-Dill-Typs und deren Bildungsbedingungen. Erzmetall 16:437–443

    Google Scholar 

  • Breiter K (1998c) P-rich muscovite granites-latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Czech Geological Survey, Peršlák, pp 107–126

    Google Scholar 

  • Breiter K, Fryda J, Seltmann R, Thomas R (1997) Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesı stock, Krušne Hory, Czech Republic. J Petrol 38:1723–1739

    Article  Google Scholar 

  • Bröcker M, Żelaźniewicz A, Enders M (1998) Rb–Sr and U–Pb geochronology of migmatitic gneisses from the Góry Sowie (West Sudetes, Poland): the importance of Mid–Late Devonian metamorphism. J Geol Soc Lond 155:1025–1036

    Article  Google Scholar 

  • Buder W, Schuppan W, Seltmann R, Wolf M (1993) The Poehla Haemmerlein deposit. In: Seltmann R, Breiter K (eds) Hercynian tin granites and associated mineralisation from the Saxonian and Bohemian parts of the Erzgebirge: excursion guide, IAGOD working group on Tin and Tungsten. GeoForschungsZentrum, Potsdam, pp 67–71

    Google Scholar 

  • Carl C, Wendt I (1993) Radiometrische Datierungen der Fichtelgbirgsgranite. Zeitschrift Geologische Wissenschaften 21:49–72

    Google Scholar 

  • Čech F, Rieder M, Novák F, Novotný J (1978) Accessory nigerite in a granite from central Bohemia, Czechoslovakia. Neues Jb Mineral Monat 8:337–346

    Google Scholar 

  • Cempírek J, Novák M (2006) Hydroxylherderit a sdružené berylofosfáty z pegmatitu Rožná-Borovina. Acta Musei Moraviae, Scientiae Geologicae 91:79–88 (in Czech, with English summary)

    Google Scholar 

  • Černý P, Novák M, Chapman R (1992) Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Maršíkov. Northern Moravia, Czechoslovakia. Can Mineral 30:699–718

    Google Scholar 

  • Černý P, Staněk J, Novák M, Baadsgaard H, Rieder M, Ottolini L, Kavalová M, Chapman R (1995) Chemical and structural evolution of micas at the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineral Petrol 55:177–202

    Article  Google Scholar 

  • Chakhmouradian AR, Mitchell RH (1997) Compositional variation of perovskite-group minerals from the carbonatite complexes of the Kola alkaline province, Russia. Can Mineral 35:1293–1310

    Google Scholar 

  • Chovan M, Rojkovič I, Andráš P, Hanas P (1992) Ore mineralization of the Malé Karpaty Mts. (Western Carpathians). Geol Carpath 43:275–286

    Google Scholar 

  • Chrt J (1959) Current result of geological research at the skarn-type deposits in the Krušne Hory Mts. and the Krkonoše Mts. Geological Průk 180–185. (in Czech)

    Google Scholar 

  • Ciesielczuk J, Domańska-Siuda J, Szuszkiewicz A, Turniak K (2008) Strzegom-Sobótka massif (Sudetes, SW Poland) – an example of a complex late-Variscan granitic intrusion and its pegmatitic mineralization. Mineralogia – Special Papers 32: 181–187

    Google Scholar 

  • Collins AS, Kryza R, Żelaźniewicz J (2000) Macrofabric fingerprints of late Devonian-early Carboniferous subduction in the Polish Variscides, the Kaczawa complex, Sudetes. J Geol Soc Lond 157:283–288

    Article  Google Scholar 

  • Dallmeyer RD, Urban M (1998) Variscan vs. Cadomian tectonothermal activity in northwestern sectors of the Teplá-Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geol Rundsch 87:94–106

    Article  Google Scholar 

  • Dallmeyer RD, Franke W, Weber K (1995a) Pre-permian geology of Central and Eastern Europe. Springer, Berlin/Heidelberg, 604 pp

    Book  Google Scholar 

  • Dallmeyer RD, Fallick AE, Koller F, Slapansky P (1995b) The Nebelstein complex: a Variscan mineralized granite intrusion in the Bohemian Massif (Austria). Beiheft I. Eur J Mineral 7:52

    Google Scholar 

  • DEKORP Research Group (1990) Results of deep-seismic reflection investigations in the Rhenish Massif. Tectonophysics 173:507–515

    Article  Google Scholar 

  • Dill HG (1989) Metallogenetic and geodynamic evolution in the central European Variscides: a pre-well site study for the German Continental Deep Drilling Programme. Ore Geol Rev 4:279–304

    Article  Google Scholar 

  • Dill HG (1990) Chemical basin analysis of the metalliferous “Variegated Metamorphics” of the Bodenmais ore district (F.R. of Germany). Ore Geol Rev 5:151–173

    Article  Google Scholar 

  • Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M (2008a) Fossil fuels, ore – and industrial minerals. In: McCann T (ed) Geology of Central Europe, Special publication. Geological Society of London, London, pp 1341–1449

    Google Scholar 

  • Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M, Locmelis B (2008b) The origin of mineral and energy resources of Central Europe (map 1: 2500000). Geological Society of London, London (on CD ROM)

    Google Scholar 

  • Dombrowski A, Okrusch M, Henjes-Kunst F (1994) Geothermobarometry and geochronology on mineral assemblages of orthogneisses and related metapelites of the Spessart Crystalline Complex, NW Bavaria, Germany. Chem Erde 54:85–101

    Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit – a correlation of U-Pb isotopic dilution TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Article  Google Scholar 

  • Dosbaba M, Novák M (2012) Quartz replacement by “kerolite” in graphic quartz–feldspar intergrowths from the Věžná I pegmatite, Czech Republic: a complex desilication process related to episyenitization. Can Mineral 50:1609–1622

    Article  Google Scholar 

  • Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic – Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci 93:742–757

    Article  Google Scholar 

  • Drozdzewski G (1993) The Ruhr coal basin (Germany): structural evolution of an autochthonous foreland basin. Int J Coal Geol 23:231–250

    Article  Google Scholar 

  • Ebner F, Cerny I, Eichhorn R, Götzinger MA, Paar WH, Prochaska W, Weber L (2000) Mineral resources in the Eastern Alps and adjoining areas. In: Neubauer F, Höck V (eds) Aspects of geology in Austria, vol 92, Mitteilungen der Österreichischen Geologischen Gesellschaft. Österreichische Geologische Gesellschaft, Vienna, pp 157–184

    Google Scholar 

  • Eichhorn R, Höll R, Loth G, Kennedy A (1999) Implication of U-Pb SHRIMP zircon data on the age and evolution of the Felberthal tungsten deposit (Tauern Window, Austria). Int J Earth Sci 88:496–512

    Article  Google Scholar 

  • Emmermann R, Lauterjung J (1997) German continental deep drilling program KTB: overview and major results. J Geophys Res 102:18179–18201

    Article  Google Scholar 

  • Falk F, Franke W, Kurze M (1995) Stratigraphy. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 221–234

    Google Scholar 

  • Fettel M (1971) Mineralienfunde bei Hornberg im Schwarzwald. Aufschluss 22:216–217

    Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    Article  Google Scholar 

  • Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

    Article  Google Scholar 

  • Frank W, Kralik M, Schabert S, Thöni M (1987) Geochronological data from the Eastern Alps. In: Flügel HW, Faupl P (eds) Geodynamics of the eastern Alps. F. Deuticke, Vienna, pp 272–281

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes, quantification and modeling in the Variscan belt, Geological Society special publication, 179. Geological Society Publication, London, pp 35–62

    Google Scholar 

  • Franke W, Stein E (2000) Exhumation of high –pressure rocks in the Saxo-Thuringian belt: geological constraints and alternative models. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modeling in the Variscan Belt, Geological Society special publications, 179. Geological Society Publications, London, pp 337–354

    Google Scholar 

  • Franke W, Kreuzer H, Okrusch M, Schüssler U, Seidel E (1995) Saxothuringian Basin: exotic metamorphic nappes, stratigraphy, structure and igneous activity. In: Dallmeyer D, Franke W, Weber K (eds) Pre-permian geology of Central and Western Europe. Springer, Berlin, pp 277–294

    Chapter  Google Scholar 

  • Frisch W, Neubauer F (1989) Pre-Alpine terranes and tectonic zoning in the eastern Alps. In: Dallmeyer RD (ed) Terranes in the circum-Atlantic Paleozoic orogens, Geological Society of America, special publications, 230. Geological Society of America, Boulder, pp 91–100

    Chapter  Google Scholar 

  • Frizzo P, Mills J, Visoná D (1982) Ore petrology and metamorphic history of Zn-Pb ores, Monteneve, Tyrol, N. Italy. Mineral Deposita 17:333–347

    Article  Google Scholar 

  • Froitzheim N, Plašienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann T (ed) Geology of Central Europe, Geological Society special publication. Geological Society, London, pp 1141–1232

    Google Scholar 

  • Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jahrb Geol Bundesanst 119:1–43

    Google Scholar 

  • Gaschnitz R (2001) Gasgenese und Gasspeicherung im flözführenden Oberkarbon des Ruhr-Beckens, Berichte des Forschungszentrums Jülich, 3859. Forschungszentrums, Jülich, pp 1–342

    Google Scholar 

  • Gebauer D, Grünenfelder M (1979) U-Pb zircon and Rb-Sr mineral dating of eclogites and their country rocks; example: Münchberger Gneiss Massif, northeast Bavaria. Earth Planet Sci Lett 42:35–44

    Article  Google Scholar 

  • Göd R (1978) Vorläufige Mitteilung über einen Spodumen-Holmquistit führenden Pegmatit aus Kärnten. Anzeiger der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse 115:161–165

    Google Scholar 

  • Göd R (1989) The spodumene deposit at “Weinebene” Koralpe, Austria. Mineral Deposita 24:270–278

    Article  Google Scholar 

  • Grecula P (1982) Gemericum – segment of the Paleotethyan riftogenous basin, Mineralia slovaca monograph. AFLA, Bratislava. 263 pp. (in Slovak with English abstract)

    Google Scholar 

  • Grecula P, Roth Z (1978) Kinematický model Západnich Karpat v souborěm řezu. Zb Geol Věd 32:49–73

    Google Scholar 

  • Grecula P, Abonyi A, Abonyiová M, Antaš J, Bartalský B, Bartalský J, Dianiška I, Drnzík E, Ďuďa R, Gargulák M, Gazdačko Ľ, Hudáček J, Kobulský J, Lörincz L, Macko J, Návesňák D, Németh Z, Novotný L, Radvanec M, Rojkovič L, Rozložník O, Varček C, Zlocha J (1995) Mineral deposit of the Slovak Ore Mountains. Mineralia Slovaca Monogr 1:1–834

    Google Scholar 

  • Habler G, Thöni M (2001) Preservation of Permo–Triassic low-pressure assemblages in the Cretaceous high-pressure metamorphic Saualpe crystalline basement (Eastern Alps, Austria). J Metamorph Geol 19:679–697

    Article  Google Scholar 

  • Hansen BT, Teufel S, Ahrendt H (1989) Geochronology of the Moldanubian-Saxothuringian Transition Zone, Northeast Bavaria. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program (KTB). Springer, Berlin, pp 55–66

    Chapter  Google Scholar 

  • Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modeling in the Variscan Belt, Geological Society special publications, 179. Geological Society Publications, London, pp 387–399

    Google Scholar 

  • Hladíková J, Aichler J, Mixa P (1992) Source of sulfur of base metal sulfide deposits at the NE margin of the Bohemian Massif (Czechoslovakia), Abstract 29th IGC Kyoto, 3:757

    Google Scholar 

  • Hohl J-L (1994) Minéraux et Mines du Massif Vosgien. Editions du Rhin, Mulhouse, 271 pp

    Google Scholar 

  • Höll R (1975) Die Scheelitlagerstätte Felbertal und der Vergleich mit anderen Scheelitlagerstätten in den Ostalpen, Abhandlungen Bayerischen Akademie der Wissenschaften N.F., 157A. Verl. d. Bayer. Akad. d. Wiss, München, pp 1–114

    Google Scholar 

  • Höller H (1959) Ein Spodumen-Beryll-Pegmatit und ein mineralreicher Marmor im Wildbachgraben bei Deutschlandsberg. Mitteilungsblatt Abteilung Mineralogie Landesmuseum Joanneum 1:19

    Google Scholar 

  • Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sbor Geol Véd LoŽisková Geol Mineral 31:5–25

    Google Scholar 

  • Holub FV, Klečka M, Matějka D (1995) Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 444–452

    Google Scholar 

  • Holub FV, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of the thermal and tectonic events along the Moldanubian-Barrandian boundary. CR Acad Sci Ser IIA 325:19–26

    Google Scholar 

  • Hovorka D, Meres Š, Ivan P (1992) Pre-Alpine Western Carpathians Mts basement complexes: geochemistry, petrology, geodynamic setting. Terra Abstract 4:32

    Google Scholar 

  • Jakes P, Waldhauserova J (1987) Orogenic sequences in the upper Proterozoic of the Bohemian Massif. Proterozoic geochemistry (IGCP 217) Lund, 1987:14

    Google Scholar 

  • Janeczek J, Sachanbiński M (1989) Beryl pegmatites in two-micas granite at the Eastern part of Strzegom-Sobótka Massif. Arch Mineral 54:57–79 (in Polish)

    Google Scholar 

  • Janoušek V, Rogers G, Bowes DR (1995) Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84:520–534

    Article  Google Scholar 

  • Jęczmyk M, Juskowiakowa M (1989) Geology and geochemical characteristics of the crystalline rocks of the Bogatynia area (Western Sudetes Mts.). Bull Inst Geol 360:5–38 (in Polish)

    Google Scholar 

  • Jiang S-Y, Palmer MR, Slack JF, Shaw DR (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia. Econ Geol 93:47–67

    Article  Google Scholar 

  • Jura D, Jurecka J, Krieger W, Kuzak R, Lesnik D, Perski Z (2000) Conditions of hard coal exploitation and its environmental impact in the western part of the Upper Silesian Coal Basin. In: Guide to field trips, 4th European Coal conference, Ustron, Polish Geological Institute, Warsaw, pp 5–39

    Google Scholar 

  • Kalenda F, Vaněček M (1989) Base metal deposits of the Zlaté Hory District. Excursion Guide 5A Gold Districts of the Bohemian Massif, Gold 89 in Europe, pp 39–43

    Google Scholar 

  • Kalt A (1995) Petrologie cordieritführender Metapelite das Bayerischen Waldes und des Schwarzwaldes. Terra Nostra 95:108

    Google Scholar 

  • Kalt A, Altherr R, Hanel M (2000) The Variscan basement of the Schwarzwald. Beiheft zum Europäischen J Mineral 12:1–43

    Google Scholar 

  • Kastl E, Tonika J (1984) The Marianske Lazne metaophiolite complex (West Bohemia). Krystalinikum 17:59–76

    Google Scholar 

  • Kleinschmidt G, Neugebauer J, Schönenberg R (1975) Gesteinsinhalt und Stratigraphie der Phyllitgruppe in der Saualpe. Clausthaler Geol Abh, Special Volume 1:11–44

    Google Scholar 

  • Kodym O (1966) Moldanubicum. In: Svoboda J (ed) Regional geology of Czechoslovakia I. Geological Survey of Czechoslovakia, Prague, pp 40–98

    Google Scholar 

  • Kohút M (2013) How many events occurred during the Variscan orogeny in the Western Carpathians. Crustal evolution and geodynamic processes in Central Europe. In: Proceedings of the Joint Conference of the Czech and German geological societies held in Plzeň (Pilsen), volume 82, 63, 16–19 September 2013

    Google Scholar 

  • Koller F (1996) Plutonische Gestein. In: Steininger FF (ed) Erdgeschichte des Waldviertels, Das Waldviertel 45. Wien, pp 25–36

    Google Scholar 

  • Konopásek J, Schulmann K (2005) Contrasting early carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). J Geol Soc Lond 162:463–470

    Article  Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaus. Abhandlungen Sächsische Geologische Landes-Anstalt 1:1–39

    Google Scholar 

  • Kovách Á, Svingor É, Grecula P (1986) Rb/Sr isotopic ages of granitoid rocks from the Spiš-Gemer metalliferous Mts., West Carpathians, Eastern Slovakia. Mineralia Slovaca 18:1–14

    Google Scholar 

  • Kozłowski A, Sachanbiński M (2007) Karkonosze intragranitic pegmatites and their minerals. In: Kozłowski A, Wiszniewska J (eds) Granitoids in Poland, Archiwum Mineralogiczne monograph, 1. Faculty of Geology of The Warsaw University, Warszawa, pp 155–178

    Google Scholar 

  • Kreuzer H, Seidel E, Schüssler U, Okrusch M, Lenz K-L, Raschka H (1989) K-Ar geochronology of different tectonic units at the northwestern margin of the Bohemian Massif. In: Meisner R, Gebauer D (eds) The evolution of European continental crust: deep drilling, geophysics, geology and geochemistry, vol 157, Tectonophysics. Elsevier, New York, pp 149–178

    Google Scholar 

  • Kreuzer H, Henjes-Kunst F, Seidel E, Schüssler U, Bühn B (1993) Ar-Ar spectra on minerals from KTB and related medium pressure units. KTB-Report 93–2, Hannover, pp 133–136

    Google Scholar 

  • Kroner U, Hahn T (2004) Sedimentation, deformation und Metamorphose im Saxothuringikum während der variszischen Orogenese: Die komplexe Entwicklung von Nord. Gondwana während kontinentaler Subduktion und schiefer Kollision. In: Linnemann U (ed) Das Saxothurigikum, Geologica Saxonia 48/49. Staatliche Naturhistorische Sammlungen, Dresden, pp 133–146

    Google Scholar 

  • Kryza R, Mazur S, Oberc-Dziedzic T (2004) The Sudetic geological mosaic: insights into the root of the Variscan orogen. Prz Geol 52:761–773

    Google Scholar 

  • Kryza R, Crowley QG, Larionov A, Pin C, Oberc-Dziedzic T, Mochnacka K (2012) Chemical abrasion applied to SHRIMP zircon geochronology: an example from the Variscan Karkonosze Granite (Sudetes, SW Poland). Gondwana Res 21:757–767

    Article  Google Scholar 

  • Kucha H (1980) Continuity in the monazite-huttonite series. Mineral Mag 43:1031–1034

    Article  Google Scholar 

  • Lammerer B, Weger M (1998) Footwall uplift in an orogenic wedge of the Tauern Window in the Eastern Alps of Europe. Tectonophysics 285:213–230

    Article  Google Scholar 

  • Langenaeler V (2000) The Campine Basin: stratigraphy, structural geology, coalification and hydrocarbon potential of the Devonian to Jurassic. Aardkundige Mededelingen 10:1–142

    Google Scholar 

  • Lenz H (1986) Rb/Sr-Gesamtgesteins-Altersbestimmung am Weissenstadt-Markleuthener Porphyrgranit des Fichtelgebirges. Geol Jahrb E 34:67–76

    Google Scholar 

  • Linnemann U (2003) Die Struktureinheiten des Saxothurigikums. In: Linnemann U (ed) Das Saxothuringikum, Gelogica Saxonica 48/49. Staatliche Naturhistorische Sammlungen, Dresden, pp 19–28

    Google Scholar 

  • Linnemann U, Nance RD, Kraft P, Zulauf G (2007) The evolution of the Rheic Ocean: from Avalonian-Cadomian Active Margin to Alleghanian-Variscan collision. The Geological Society of America Special Paper, 423, Boulder, pp 1–630

    Google Scholar 

  • Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb-Sr) und karbonischer Abkühlungsalter (K-Ar) der Muskowit-Biotit-Gneise des Spessart und der Biotit-Gneise des Böllsteiner Odenwald. Geol Rundsch 75:569–583

    Article  Google Scholar 

  • Lis J, Sylwestrzak H (1979) Episyenites and perspectives of occurrences of intragranite uranium deposits in the Karkonosze Massif. Przegl Geol 27:223–229 (in Polish)

    Google Scholar 

  • London D (2008) Pegmatites, Canadian mineralogist, special publication, 10. Mineralogical Association of Canada, Ottawa, pp 1–347

    Google Scholar 

  • Ludhová L, Janák M (1999) Phase relations and P-T path of cordierite-bearing migmatites, Western Tatra Mts, Western Carpathians. Geol Carpath 50:283–293

    Google Scholar 

  • Malitch KN, Thalhammer OAR, Knauf VV, Melcher F (2003) Diversity of platinum-group mineral assemblages in banded and podiform chromatite from the Kraubath ultramafic massif, Austria: evidence for an ophiolitic transition zone? Mineral Deposita 38:282–297

    Google Scholar 

  • Malkovský M (1979) Tektogenese der Plattformbedeckung des Böhmischen Massivs. Knihovna Ústř Úst Geol Praha 53:1–176

    Google Scholar 

  • Markl G (1995) Bertrandit vom Leuchtenberg ein weiteres Berylliumsilikat aus dem Gebiet von Hornberg. Erzgräber 9:96–98

    Google Scholar 

  • Markl G, Schumacher JC (1996) Cassiterite-bearing greisens and late-magmatic mineralization in the Variscan Triberg Granite Complex, Schwarzwald Germany. Econ Geol 91:576–589

    Article  Google Scholar 

  • Máška M, Zoubek V (1960) The principal division of the West Carpathians and their pre-Neodic basement. In: Buday T, Koym O, Mahel M et al (eds) Tectonic development of Czechoslovakia. Nakladatelstvi Československé Akademie Věd, Praha, pp 139–151

    Google Scholar 

  • Matte P (2001) The Variscan collage and orogeny (480±290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128

    Article  Google Scholar 

  • Matte P, Maluski H, Rajlich R, Franke W (1990) Terrane boundaries in the Bohemian Massif: results of large-scale Variscan thrusting. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Mazur S, Aleksandrowski P, Szczepański J (2005) The presumed Teplá-Barrandian/Moldanubian terrane boundary in the Orlica Mountains (Sudetes, Bohemian Massif): structural and petrological characteristics. Lithos 82:85–112

    Article  Google Scholar 

  • Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan orogen in Poland. Geol Q 50:89–118

    Google Scholar 

  • McCann T (2008a) The geology of Central Europe: precambrian and palaeozoic: 1. The Geological Society of London, London, Special volume, 748 pp

    Google Scholar 

  • McCann T (2008b) The geology of Central Europe: mesozoic and cenozoic: 2. The Geological Society of London, London, Special volume, 700 pp

    Google Scholar 

  • McKerrow WS, Ziegler AM (1972) Palaeozoic oceans. Nature Phys Sci 240:92–94

    Article  Google Scholar 

  • McKerrow WS, MacNiocaill C, Ahlberg PE, Clayton G, Cleal CJ, Eagar RMC (2000) The late Paleozoic relations between Gondwana and Laurussia. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes, quantification and modeling in the Variscan belt, Geological Society special publication, 179. Geological Society Publishing House, London, pp 9–20

    Google Scholar 

  • Misař Z, Dudek A, Havlena V, Weiss J (1983) Geologie ČSSR I, Český masív. Státni pedagogické nakladatestvi, Praha, 333 pp

    Google Scholar 

  • Mochnacka K, Banaś M, Kramer W, Pošmourný K (1995) Metallogenesis of the Lugicum. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 357–372

    Google Scholar 

  • Morávek P, Pouba Z (1990) L ór dans la métallogénie du massif de Bohème. Mineral Deposita (Suppl) 25:90–98

    Google Scholar 

  • Mrázek P (1986) Metallogeny of the West Bohemian Upper Proterozoic. In: Proceedings of conference on metallogeny of the precambrian, IGCP, Proj. 91:49–53

    Google Scholar 

  • Mrázek P, Pouba Z (1995) Metallogenesis. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 411–414

    Google Scholar 

  • Němec D (1973) Das Vorkommen der Zn-Spinelle in der Böhmischen Masse. Tschermaks Mineralogische und Petrographische Mitteilungen 19:95–109

    Article  Google Scholar 

  • Němec D (1978) Zink im Staurolith. Chem Erde 37:307–314

    Google Scholar 

  • Němec D (1998) The Rožná pegmatite field, western Moravia (Czech Republic). Chem Erde 58:233–246

    Google Scholar 

  • Neuroth H (1997) K-Ar-Datierungen an detritischen Muskowiten-“Sicherungskopien” orogener Prozesse am Beispiel der Varisziden. Göttinger Arbeiten Geologie und Paläontologie 72:1–143

    Google Scholar 

  • Nickel E, Fettel M (1985) Odenwald, vol 65, 2nd edn, Sammlung geologischer Führer. Bornträger, Berlin/Stuttgart, 231 pp

    Google Scholar 

  • Niedermayr G (1990) Die Mineralien der Kor- und Saualpe in Kärnten, Österreich. Mineralien-Welt 1:58–67

    Google Scholar 

  • Novák M (1992) Locality no 1: Rožná near Bystřice nad Pernštejnem, a large pegmatite dike of the lepidolite subtype, type locality of the lepidolite. In: Novák M, Černý P (eds) Field trip guidebook, Lepidolite 200, pp 21–26

    Google Scholar 

  • Novák M (2005) Granitické pegmatity Českého masivu (Česká Republika); mineralogická, geochemická a regionální klasifikace a geologický význam. Acta Musei Moraviae, Scientiae geologicae 90:3–74 (in Czech, with an abstract in English)

    Google Scholar 

  • Novák M, Černý P (2001) Distinctive compositional trends in columbite-tantalite from two segments of the lepidolite pegmatite at Rožná, western Moravia, Czech Republic. J Czech Geol Soc 46:1–8

    Google Scholar 

  • Novák M, Filip J (2010) Unusual (Na, Mg)-enriched beryl and its breakdown products (beryl II, bazzite, bavenite) from euxenite-type NYF pegmatite related to the orogenic ultrapotassic Třebíč pluton, Czech Republic. Can Mineral 48:615–628

    Article  Google Scholar 

  • Novák M, Gadas P (2010) Internal structure and mineralogy of a zoned anorthite- and grossular-bearing leucotonalitic pegmatite in serpentinized lherzolite at Ruda Nad Moravou, Staré Mešto unit, Czech Republic. Can Mineral 48:629–650

    Article  Google Scholar 

  • Novák M, Hyršl J (1992) Locality no.3: Vlastějovice near Zruč nad Sázavou, pegmatites with fluorite penetrating skarn. In: Novák M, Černý P (eds) International symposium on mineralogy, petrology and geochemistry of granitic pegmatites Lepidolite 200, Nové Město na Moravě, Czech Republic. Field trip guidebook, pp 33–37

    Google Scholar 

  • Novák M, Povondra P (1995) Elbaite pegmatites in the Moldanubicum: a new subtype of the rare-element class. Mineral Petrol 55:159–176

    Article  Google Scholar 

  • Novák M, Selway JB (1997) Locality no. 1: Rožná near Bystřice nad Pernštejnem, Hradisko hill, a large lepidolite subtype pegmatite dike. In: Novák M, Selway JB (eds) International symposium Tourmaline 1997, Nové Město na Moravě, Czech Republic. Field trip guidebook, pp 23–38

    Google Scholar 

  • Novák M, Černý P, Čech F, Staněk J (1992) Granitic pegmatites in the territory of the Bohemian and Moravian Moldanubicum. In: Novák M, Černý P (eds) International symposium on mineralogy, petrology and geochemistry of granitic pegmatites, Lepidolite 200, Nové Město na Moravě, Czech Republic. Field trip guidebook, pp 11–20

    Google Scholar 

  • Novák M, Selway JB, Černý P, Hawthorne FC, Ottolini L (1999) Tourmaline of the elbaite–dravite series from an elbaite-subtype pegmatite at Bližná, southern Bohemia, Czech Republic. Eur J Mineral 11:557–568

    Article  Google Scholar 

  • Novák M, Cerný P, Uher P (2003) Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite granite pegmatite, Marsikov, Czech Republic. Eur J Mineral 15:565–574

    Article  Google Scholar 

  • Novák M, Černý P, Cempírek J, Šrein V, Filip J (2004) Ferrotapiolite as a pseudomorph of stibiotantalite from the lastovicky lepidolite pegmatite, Czech Epublic; an example of hydrothermal alteration at constant Ta/(Ta + Nb). Can Mineral 42:1117–1128

    Article  Google Scholar 

  • Novák M, Škoda R, Gadas P, Krmíček L, Černý P (2012) Contrasting origins of the mixed (NYF + LCT) signature in granitic pegmatites, with examples from the Moldanubian Zone, Czech Republic. Can Mineral 50:1077–1094

    Article  Google Scholar 

  • Oberc-Dziedzic T, Kryza R (2012) Late stage Variscan magmatism in the Strzelin Massif (SW Poland): SHRIMP zircon ages of tonalite and Bt-Ms granite of the Gęsiniec intrusion. Geol Q 56:225–236

    Article  Google Scholar 

  • Oberc-Dziedzic T, Kryza R, Białek J (2010) Variscan multistage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U-Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. Geol Q 54:301–324

    Google Scholar 

  • Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequence for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundsch 86:2–20

    Article  Google Scholar 

  • Osann A (1927) Die Mineralien Badens. Schweizerbart, Stuttgart, 239 pp

    Google Scholar 

  • Pašava J, Hladikova J, Dobes P (1996) Origin of metal-rich black shales from the Bohemian Massif, Czech Republic. Econ Geol 91:63–79

    Article  Google Scholar 

  • Patočka F, Vrba J (1989) The comparison of stratabound massive sulfides deposits using the fuzzy-linguistic diagnosis of the Zlaté Hory deposits, Czechoslovakia, as an example. Mineral Deposita 4:192–198

    Article  Google Scholar 

  • Pertold Z (1978) Prospects of the stratiform deposits of the Bohemian massif. In: Kužwart M (ed) Theoretical basic prognoses of the raw materials in Czechoslovakia, pp 118–123. (in Czech)

    Google Scholar 

  • Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorph Geol 15:203–222

    Article  Google Scholar 

  • Pezzotta F, Guastoni A (1998) Rossmanit aus Rozna (CR) und Elba (I). Lapis 9:38–40

    Google Scholar 

  • Pieczka A (2000) A rare mineral-bearing pegmatite from the serpentinite massif, the Fore-Sudetic Block, SW Poland. Geol Sudet 33:23–31

    Google Scholar 

  • Pin C, Puziewicz J, Duthou JL (1989) Ages and origins of a composite granitic massif in the Variscan belt: a Rb-Sr study of the Strzegom-Sobótka Massif, W Sudetes (Poland). Neues Jb Mineral Abh 160:71–82

    Google Scholar 

  • Pitcher WS (1979) The nature, ascent and emplacement of granitic magmas. J Geol Soc Lond 136:627–662

    Article  Google Scholar 

  • Pitcher WS (1982) Granite type and tectonic environment. In: Hsü KJ (ed) Mountain building processes. Academic, London, pp 19–40

    Google Scholar 

  • Postl W, Golob P (1979) Ilmenorutil (Nb-Rutil), Columbit und Zinnstein aus dem Spodumenpegmatit im Wildbachgraben, Koralpe (Steiermark). Mitt-Bl Abt Miner Landesmuseum Joanneum 47:27–35

    Google Scholar 

  • Pouba Z, Ilavsky J (1986) Czechoslovakia. In: Dunning FW, Evans AM (eds) Mineral deposits of Europe, 3, Central Europe. IMM & Mineralogical Society, London, pp 117–173

    Google Scholar 

  • Povondra P, Pivec E, Čech F, Lang M, Novák F, Prachař I, Ulrych J (1987) Přibyslavice peraluminous granite. Acta Univ Carol Geol 3:183–283

    Google Scholar 

  • Povondra P, Staňková J, Staněk J (1992) CO2 –bearing cordierite of Moldanubian leptynite rock series from Horní Bory, Czech Republic. Acta Univ Carol Geol 1992:331–349

    Google Scholar 

  • Povondra P, Lang M, Pivec E, Ulrych J (1998) Tourmaline from the Přibyslavice peraluminous alkali-feldspar granite, Czech Republic. J Czech Geol Soc 43:3–8

    Google Scholar 

  • Prachař I, Povondra P, Novák F (1983) Manganese-rich siderite from granite at Přibyslavice near Čáslav. Acta Univ Carol Geol 1983:13–25

    Google Scholar 

  • Radvanec M, Grecula P, Žák K (2004) Siderite mineralization of the Gemericum Superunit (Western Carpathians, Slovakia): review and a revised genetic model. Ore Geol Rev 24:267–298

    Article  Google Scholar 

  • Rafailovich M (1997) Epithermal gold deposits of Kazakhstan. In: Bekzanov GR, Dudich E, Gaál G, Jenchuraeva RJ (eds) Paleozoic granite-related Au, Cu, Mo, W, REE deposits and epithermal gold deposits, IUGS/UNESCO Deposit Modeling Program, workshop, 31 August–14 September, 1997, Kazakhstan and Kyrgyzstan, Budapest, pp 54–55

    Google Scholar 

  • Richter P, Stettner G (1979) Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geologica Bavarica 78:1–144

    Google Scholar 

  • Rolland Y, Cox S, Boullie AM, Pennacchioni G, Mancktelow N (2003) Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth Planet Sci Lett 214:203–219

    Article  Google Scholar 

  • Schaltegger U (2000) U-Pb geochronology of the southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828

    Article  Google Scholar 

  • Schaltegger U, Corfu F (1995) Late Variscan “Basin and Range” magmatism and tectonics in the Central Alps: evidence from U-Pb geochronology. Geodin Acta 8:82–98

    Article  Google Scholar 

  • Schleicher H (1994) Collision-type granitic melts in the context of thrust tectonics and uplift history (Triberg granite complex, Schwarzwald, Germany). Neues Jb Mineral Abh 166:211–237

    Google Scholar 

  • Schneiderhöhn H (1961) Die pegmatite [The pegmatites]. Gustav Fischer Verlag, Stuttgart, 720 pp. (in German)

    Google Scholar 

  • Schorr T (1984) Beryll aus dem Schwarzwald. Lapis 9:22

    Google Scholar 

  • Schüssler U, Oppermann U, Kreuzer H, Seidel E, Okrusch M, Lenz K-L, Raschka H (1986) Zur Altersstellung des ostbayerischen Kristallins-Ergebnisse neuer K-Ar-Datierungen. Geologica Bavarica 89:21–47

    Google Scholar 

  • Sebastian U (2013) Die Geologie des Erzgebirges. Springer Spektrum, Berlin/Heidelberg 268 pp

    Book  Google Scholar 

  • Seeland F (1876) Der Hüttenberger Erzberg und seine nächste Umgebung. Jahrbuch der Geologischen Reichsanstalt 26:49–112

    Google Scholar 

  • Seltmann R, Faragher AE (1994) Collisional orogens and their related metallogeny-a preface. In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collision orogen. Czech Geological Survey, Prague, pp 7–19

    Google Scholar 

  • Selway JB, Novák M, Hawthorne FC, Černý P, Ottolini L, Kyser TK (1998) Rossmanite LiA 2Al 6(BO3)3Si6O18(OH)4, a new alkali-deficient tourmaline: description and crystal structure. Am Mineral 83:894–900

    Google Scholar 

  • Selway JB, Novák M, Černý P, Hawthorne FC (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. Eur J Mineral 12:569–584

    Google Scholar 

  • Škoda R, Novák M (2007) Y, REE, Nb, Ta, Ti-oxide (AB 2 O 6)minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends. Lithos 95:43–99

    Article  Google Scholar 

  • Söllner P, Köhler H, Müller-Sohnius D (1981) Rb/Sr Altersbestimmungen an Gesteinen der Münchberger Gneismasse (M.N:), NE-Bayern; Teil 1 Gesamtgesteinsdatierungen. Neues Jb Mineral Abh 141:90–112

    Google Scholar 

  • Stein E (1988) Die strukturgeologische Entwicklung im Übergangsbereich Saxothuringikum/ Moldanubikum in NE-Bayern. Geologica Bavarica 92:5–131

    Google Scholar 

  • Štemprok M, Seltmann R (1994) The metallogeny of the Erzgebirge (Krušné Hory). In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collision orogen. Czech Geological Survey, Prague, pp 61–69

    Google Scholar 

  • Stochs HG, Lugmair GW (1986) Geochemistry and evolution of eclogites from the Münchberg Gneiss Massif, W-Germany. Terra Cognita 6:254

    Google Scholar 

  • Stochs HG, Lugmair GW (1987) Geochronology and geochemistry of eclogites from the Münchberg Gneiss Massif Germany. Terra Cognita 7:163

    Google Scholar 

  • Suess E (1888) Das Antlitz der Erde. Zweiter Band. Temsky/Freytag, Prag/Wien/Leipzig, 703 pp

    Google Scholar 

  • Tankard AJ, Jackson MPA, Eriksson KA, Hobday DK, Hunter DR, Minter WEL (1982) Crustal evolution of southern Africa. Springer, Heidelberg/New York/Berlin 523 pp

    Book  Google Scholar 

  • Taucher J, Walter F, Postl W (1992) Mineralparagenesen in Pegmatiten der Koralpe. Teil1: Die Lithium-Lagerstätte am Brandrücken, Weinebene, Koralpe, Kärnten. Die Minerale des feinkörnigen Spodumenpegmatits (MH-Pegmatit). Matrix 1:23–72

    Google Scholar 

  • Taucher J, Walter F, Postl W (1994) Mineralparagenesen in Pegmatiten der Koralpe. Part 2: Die Lithium-Lagerstätte am Brandrücken, Weinebene, Kärnten. Die Minerale des grobkörnigen Spodumenpegmatits (AH-Pegmatit) sowie die Minerale der Pegmatitrandgesteine. Matrix 3:19–52

    Google Scholar 

  • Taylor BE, Beaudoin G (2000) Sulphur stratigraphy of the Sullivan Pb–Zn–Ag deposit, B.C: evidence for hydrothermal sulphur, and bacterial and thermochemical sulphate reduction. In: Lydon JW, Höy T, Slack JF, Knapp M (eds) The Sullivan Deposit and its geological environment, Special publication Mineral Deposits Division of the Geological Association of Canada, 1. Geological Association of Canada, Mineral Deposits Division, St. John’s, pp 696–719

    Google Scholar 

  • Teipel U, Eichhorn R, Höll R, Kennedy A (2002) Neoproterozoic and lower Ordovician magmatic events in the western Bohemian Massif (Bayerischer Wald, Germany)-preliminary results from SHRIMP dating. In: Niebuhr B (ed) Geo 2002, Planet Erde, Vergangenheit, Entwicklung, Zukunft, October 1 through 5, 2002, Würzburg. Deutsche Geologische Gesellschaft, Hannover, pp 327–328

    Google Scholar 

  • Thöni M, Miller C (2004) Ordovician meta-pegmatite garnet (N-W Ötztal basement, Tyrol, Eastern Alps): preservation of magmatic garnet chemistry and Sm–Nd age during mylonitization. Chem Geol 209:1–26

    Article  Google Scholar 

  • Thöni M, Miller C, Zanetti A, Habler G, Goessler W (2008) Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian–Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol 254:216–237

    Article  Google Scholar 

  • Timmermann H, Krenn E, Dörr W, Finger F, Zulauf G (2002) Cadomian and Variscan metamorphism in the Teplá-Barrandian unit, northwestern Bohemian Massif: implications for the resetting of the U-Pb systematics in monazites. In: Niebuhr B (ed) Geo 2002, Planet Erde, Vergangenheit, Entwicklung, Zukunft, October 1 through 5, 2002, Würzburg. Deutsche Geologische Gesellschaft, Hannover, pp 331–332

    Google Scholar 

  • Tischendorf G, Förster HJ (1990) Acid magmatism and related metallogenesis in the Erzgebirge. Geol J 25:443–454

    Article  Google Scholar 

  • Tischendorf G, Geisler M, Gerstenberger H, Budzinski H, Vogler P (1987) Geochemistry of Variscan granites of the Westerzgebirge-Vogtland Region-an example of tin deposit-generating granites. Chemie der Erde/Geochem 46:213–235

    Google Scholar 

  • Tischendorf G, Dill HG, Förster HJ (1995b) Metallogenesis of the Saxothuringian Basins. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 266–273

    Google Scholar 

  • Todt W (1979) U-Pb-Datierungen an Zirkonen des kristallinen Odenwaldes. Fortschritte Mineralogie (Beiheft) 57:153–154

    Google Scholar 

  • Tollmann A (1977) Geologie von Österreich, Band 1. Die Zentralalpen. Deuticke-Verlag, Wien 766 pp

    Google Scholar 

  • Tollmann A (1982) Grossräumiger variszischer Deckenbau im Moldaunubikum und neue Gedanken zum Variszikum Europas. Geotektonische Forschung 64:1–91

    Google Scholar 

  • Trümpy R (1980) Geology of Switzerland. Wepf, Basel, 334 pp

    Google Scholar 

  • Ucik F (2005) Die Feldspatpegmatite des Millstättersee-Rückens. Arbeitstagung der Geologischen Bundesanstalt Blatt 182 Spittal an der Drau, Gmünd/ Kärnten, 12–16 September, p 135

    Google Scholar 

  • Uher P, Broska I (1995) Pegmatites in two suites of Variscan orogenic granitic rocks (Western Carpathians, Slovakia). Mineral Petrol 55:27–36

    Article  Google Scholar 

  • Uher P, Černý P (1998) Zircon in Hercynian granitic pegmatites of the western Carpathians, Slovakia. Geol Carpath 49:261–270

    Google Scholar 

  • Uher P, Černý P, Chapman R, Hatar J, Miko O (1998a) Evolution of Nb, Ta-oxide minerals in the Prašivá granite pegmatites, Slovakia. primary Fe, Ti-rich assemblages. Can Mineral 36:525–534

    Google Scholar 

  • Uher P, Černý P, Chapman R, Hatar J, Miko O (1998b) Evolution of Nb, Ta-oxide minerals in the Prasiva granitic pegmatites, Slovakia; II, External hydrothermal Pb, Sb overprint. Can Mineral 36:535–545

    Google Scholar 

  • Uher P, Dávidová Š, Vikár I (2001) Schorl composition from the barren granitic pegmatites in the Western Carpathians: two examples from the Nízké Tatry mountains. J Czech Geol Soc 46:21–26

    Google Scholar 

  • Uher P, Bačík P, Ozdín D, Števko M (2012) Beryl in granitic pegmatites of the Western Carpathians (Slovakia): compositional variations, mineral inclusions and breakdown products. Acta Mineralogica-Petrographica, Abstract Series, Szeged, 7:144

    Google Scholar 

  • Van Breemen O, Bowes DR, Aftalion M, Żelaźniewicz A (1988) Devonian tectonothermal activity in the Sowie Góry Gneissic Block, Sudetes, Southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Rocz Pol Towarz Geol 58:3–19

    Google Scholar 

  • Van Houten FB, Hou HF (1990) Stratigraphic and palaeogeographic distribution of Palaeozoic oolitic ironstones. In: McKerrow WS, Scotese CR (eds) Palaeozoic palaeogeography and biogeography, Geological Society Memoire, 12. Geological Society, London, pp 87–93

    Google Scholar 

  • Vanĕček M, Patočka F, Pošmournŷ K, Raijlich P (1985) The use of the isotope composition of ore lead in metallogenic analysis of the Bohemian Massif. Rozpravy Ceskoslovenské Akademie Ved, Rada Matematických a Prírodních Ved 95:1–114

    Google Scholar 

  • von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents – the constituents of the Variscan and Alpine collision orogens. Tectonophysics 365:7–22

    Article  Google Scholar 

  • Wagner T, Boyce AJ (2001) Sulphur isotope characteristics of recrystallisation, remobilisation and reaction processes: a case study from the Ramsbeck Pb-Zn deposit, Germany. Mineral Deposita 36:670–679

    Article  Google Scholar 

  • Wagner T, Boyce AJ (2003) Sulphur isotope geochemistry of black shale-hosted antimony mineralization, Arnsberg, northern Rhenish Massif, Germany: implications for late-stage fluid flow during the Variscan orogeny. J Geol Soc Lond 160:299–308

    Article  Google Scholar 

  • Walter R (1992) Die Geologie von Mitteleuropa, 5th edn. Schweizerbart, Stuttgart, 561 pp

    Google Scholar 

  • Walter F, Postl W, Taucher J (1990) Weinebeneit: Paragenese und Morphologie eines neuen Ca-Be-Phosphates von der Spodumenpegmatit-Lagerstätte Weinebene, Koralpe, Kärnten. Mitt Abt Miner Landesmuseum Joanneum 58:37–43

    Google Scholar 

  • Weber B (1978a) Mineralien aus den Metapegmatiten Wilma und Gertrude bei Obersdorf und Menzlhof in der Oberpfalz. Aufschluss 29:325–329

    Google Scholar 

  • Weber K (1978b) Das Bewegungsbild im Rhenoherzynikum – Abbild einer varistischen Subfluenz. Z Dtsch Geol Ges 129:249–281

    Google Scholar 

  • Weber K (1995) Introduction. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Berlin, pp 153–154

    Chapter  Google Scholar 

  • Weber K, Behr JH (1983) Geodynamic interpretation of the Mid-European Variscides. In: Martin H, Eder FW (eds) Intercontinental fold belts. Springer, Berlin/Heidelberg/New York, pp 427–469

    Chapter  Google Scholar 

  • Websky M (1868) Über Sarkopsid und Kochelit, zwei neue Minerale aus Schlesien. Zeitschrift der Deutschen Geologische Gesellschaft 20:245

    Google Scholar 

  • Weger M, Loth G, Höll R, Masch L, Köhler H, Rohrmüller J (1998) The early tectonometamorphic evolution of the southern zone of Erbendorf-Vohenstrauss (ZV, NW-Bohemian Massif, Bavaria) inferred from geochemical, radiometric, petrologic, and structural characteristics. Acta Univ Carol Geol 42:357

    Google Scholar 

  • Wendt I, Kreuzer H, Müller P, Schmidt H (1986) Gesteins- und Mineraldatierungen des Falkenberger Granits. Geol Jahrb E 34:5–67

    Google Scholar 

  • Werner W, Walther HJ (1995) Metallogenesis. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Berlin, pp 87–95

    Chapter  Google Scholar 

  • Wignal PB (1991) Model for transgressive black shales? Geology 19:167–170

    Article  Google Scholar 

  • Will TM, Schmädicke E (2001) A first report of retrogressed eclogites in the Odenwald Crystalline Complex: evidence for high‐pressure metamorphism in the Mid‐German Crystalline Rise, Germany. Lithos 59:109–125

    Article  Google Scholar 

  • Willner AP, Klemm I, Rötzler K, Maresch WV (1995) Petrologische Belege aus dem mittelkrustalen Niveau für eine variskische Krustenstapelung im Erzgebirge. Terra Nostra 95/8:138

    Google Scholar 

  • Žáček V, Novák M, Raimboult L, Zachariáš J, Ackerman L (2003) Locality No. 8: Vlastějovice near Ledeč nad Sázavou. Fe-skarn, barren fluorite pegmatite. In: Novák M (ed) International symposium on light elements in rock forming minerals LERM 2003, Nové Město na Moravě, Czech Republic. Field trip guidebook, pp 61–70

    Google Scholar 

  • Zachariáš J, Pudilová M (2002) Fluid inclusion and stable isotope study of the Kasejovice gold district, central Bohemia. Bull Czech Geol Surv 77:157–165

    Google Scholar 

  • Zachariáš J, Stein H (2001) Re-Os ages of Variscan hydrothermal gold mineralisations, Central Bohemian metallogenetic zone, Czech Republic. In: Piestrzyński A et al (eds) Mineral deposits at the beginning of the 21st century. Swets & Zeitlinger Publishers, Lisse, pp 851–854

    Google Scholar 

  • Zeh A, Will TM (2010) The mid‐German crystalline rise. In: Linnemann U, Romer RL (eds) Pre‐Mesozoic geology of Saxo‐Thuringia – from the Cadomian active margin to the Variscan orogen. Schweizerbart, Stuttgart, pp 195–220

    Google Scholar 

  • Zeh A, Gerdes A, Will TM, Millar IL (2005) Provenance and magmatic‐metamorphic evolution of a Variscan island arc complex: constraints from U-Pb dating, petrology, and geospeedometry of the Kyffhäuser Crystalline Complex, Central Germany. J Petrol 32:1393–1420

    Article  Google Scholar 

  • Żelaźniewicz A (1995) Introduction (Lugicum). In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 311–314

    Google Scholar 

  • Ziegler AM, Hansen KS, Johnson ME, Kelly MA, Scotese CR, Van der Voo R (1977) Silurian continental distributions, paleogeography, climatology, and biogeography. Tectonophysics 40:13–51

    Article  Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá-Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Dtsch Geol Ges 150:627–640

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dill, H.G. (2015). Pegmatitic Rocks and Their Geodynamic Setting in the Central European Variscides. In: The Hagendorf-Pleystein Province: the Center of Pegmatites in an Ensialic Orogen. Modern Approaches in Solid Earth Sciences, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-18806-5_2

Download citation

Publish with us

Policies and ethics