Abbaspour KC (2011) SWAT-CUP4: SWAT calibration and uncertainty programs—A user manual. p21
Google Scholar
Abdo KS, Fiseha BM, Rientjes THM, Gieske ASM, Haile AT (2009) Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia. Hydrol Process 23:3661–3669
Google Scholar
Abtew W, Melesse AM (2014a) Nile River Basin hydology. In: Melesse AM, Abtew W, Setegn S (eds) Nile River Basin: ecohydrological challenges, climate change and hydropolitics. Springer, Berlin, pp 7–22
Google Scholar
Abtew W, Melesse AM (2014b). Climate teleconnections and water management. In: Nile River Basin. Springer International Publishing, Berlin, pp. 685-705
Google Scholar
Abtew W, Melesse AM (2014c) Transboundary Rivers and the Nile. In: Nile River Basin. Springer International Publishing, Berlin, pp 565–579
Google Scholar
Abtew W, Melesse AM, Desalegn T (2009a) Spatial, inter and intra-annual variability of the Blue Nile River Basin rainfall. Hydrol Process 23(21):3075–3082
CrossRef
Google Scholar
Abtew W, Melesse AM, Desalegn T (2009b) El Niño Southern Oscillation link to the Blue Nile River Basin hydrology. Hydrol Process 23(26):3653–3660 (Special issue: Nile Hydrology)
Google Scholar
AMCEN (2011) Addressing climate change challenges in Africa: A practical guide towards sustainable development, p3
Google Scholar
Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of base flow and groundwater recharge in Upper Mississippi River basin. J Hydrol 227:21–40
CrossRef
Google Scholar
Anwar A, Melesse AM, Admasu S (2014) Climate change in upper Gilgel Abay River catchment, Blue Nile Basin Ethiopia. In: Melesse AM, Abtew W, Setegn S (eds) Nile River Basin: ecohydrological challenges, climate change and hydropolitics. Springer, Berlin, pp 363–388
Google Scholar
Bader D, Covey C, Gutowski W, Held I, Kunkel K, Miller R, Tokmakian R, Zhang M (2008) Climate models: an assessment of strengths and limitations. US Department of Energy Publications, p 8
Google Scholar
Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water. Intergovernmental Panel on Climate Change (IPCC)
Google Scholar
Behulu F., Setegn S., Melesse A.M. and Fiori A., (2013) Hydrological analysis of the Upper Tiber Basin: A Watershed Modeling Approach, Hydrological Processes, 27(16), 2339–2351
Google Scholar
Behulu F, Setegn S, Melesse AM, Romano E, Fiori A (2014) Impact of climate change on the hydrology of Upper Tiber River Basin using bias corrected regional climate model. Water Resour Manag 1–17
Google Scholar
Beyene T, Lettermaier DP, Kabat P (2010) Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios. Clim Change 100:433–461
CrossRef
Google Scholar
Carter TR, Hulme M, Lal M (1999) Guidelines on the use of scenario data for climate impact and adaptation assessment v1
Google Scholar
Carter TR, Hulme M, Lal M (2007) Guidelines on the use of scenario data for climate impact and adaptation assessment v2
Google Scholar
CCIS (2008) Frequently asked questions. SDSM Background 1of 4
Google Scholar
Chebud, Y., Melesse, A.M. (2013) Stage Level, Volume, and Time-frequency change information content of Lake Tana using Stochastic Approaches, Hydrological Processes, 27(10): 1475–1483 DOI: 10.1002/hyp.9291
Google Scholar
Chebud YA, Melesse AM (2009a) Numerical modeling of the groundwater flow system of the Gumera Sub-Basin in Lake Tana Basin, Ethiopia. Hydrol Process 23(26):3694–3704 (Special issue: Nile Hydrology)
Google Scholar
Chebud YA, Melesse AM (2009b) Modeling lake stage and water balance of Lake Tana, Ethiopia. Hydrol Process 23(25):3534–3544
CrossRef
Google Scholar
Chen H, Xiang T, Zhou X, CY XU (2012) Impacts of climate change on the Qingjiang Watershed’s runoff change trend in China. Stoch Env Res Risk Assess 26:847–858
CrossRef
Google Scholar
Crane RG, Hewitson BC (1998) Doubled CO2 precipitation changes for the susquehanna basin: down-scaling from the genesis general circulation model. Int J Climatol 18:65–76
CrossRef
Google Scholar
Deboer B (2007) The impact of climate change on rainfall extremes over Northeast Africa. KNMI, Royal Netherlands Meteorological Institute, De Bilt, Netherlands p5
Google Scholar
Dessu SB, Melesse AM (2012) Modeling the rainfall-runoff process of the Mara River Basin using SWAT. Hydrol Process 26(26):4038–4049
CrossRef
Google Scholar
Dessu SB, Melesse AM (2013) Impact and uncertainties of climate change on the hydrology of the Mara River Basin. Hydrol Process 27(20):2973–2986
Google Scholar
Dessu SB, Melesse AM, Bhat M, McClain M (2014) Assessment of water resources availability and demand in the Mara River Basin. CATENA 115:104–114
CrossRef
Google Scholar
Eguavoen I (2009) The acquisition of water storage facilities in the Abay River Basin. University of Bonn, Ethiopia
Google Scholar
Elshamy ME, Balirira R, Abdel-Gaffar E, Moges SA (2009) Investigating the climate sensitivity of different Nile sub-basins. In: 13th international water technology conference, IWTC 13 2009, Hurghada, Egypt
Google Scholar
Gagnon SB, Singh B, Rousselle J, Roy L (2005) An application of the statistical downscaling model (SDSM) to simulate climatic data for streamflow modelling in Québec. Can Water Resour J 30:297–314
CrossRef
Google Scholar
Gebrekristos ST (2008) Watershed modeling of Lake Tana basin using SWAT. MSc Thesis, ArbaMinch University, 45
Google Scholar
Gebremariame ZH (2009) Assessment of climate change impact on the net basin supply of Lake Tana Water balance. ITC MSc thesis, ENSCHEDE, The Netherlands
Google Scholar
Getachew HE, Melesse AM (2012) Impact of land use /land cover change on the hydrology of AngerebWatershed, Ethiopia. Int J Water Sci 1(4):1–7. doi:10.5772/56266
Google Scholar
Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29:191–216
CrossRef
Google Scholar
Grey OP, Webber Dale G, Setegn SG, Melesse AM (2013) Application of the soil and water assessment tool (SWAT Model) on a small tropical Island State (Great River Watershed, Jamaica) as a tool in integrated watershed and coastal zone management. Int J Trop Biol Conserv 62(3):293–305
Google Scholar
Green WH, Ampt GA (1911) Studies on soil physics, 1, The flow of air and water through soils, J. Agric. Sci., 4(1), 1–24
Google Scholar
Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Climate Research, 7, 85–95
Google Scholar
James LD, Burges SJ (1982) Selection, calibration, and testing of hydrologic models. Hydrol Model Small Watersheds, 437–472
Google Scholar
Jenkins GS, Barron EJ (1997) Global climate model and coupled regional climate model simulations over the eastern United States: GENESIS and RegCM2 simulations. Global Planet Change 15:3–32
CrossRef
Google Scholar
Kim U, Kaluarachchi JJ (2009) Climate change impacts on water resources in the Upper Blue Nile River Basin, Ethiopia1. JAWRA J Am Water Resour Assoc 45:1361–1378
CrossRef
Google Scholar
Mapfumo E, Chanasyk DS, Baron VS (2003) Patterns and simulation of soil water under different grazing management systems in central Alberta. Can J Soil Sci 83:601–614
CrossRef
Google Scholar
Mango L, Melesse AM, McClain ME, Gann D, Setegn SG (2011a) Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management. Hydrol Earth Syst Sci 15:2245–2258. doi:10.5194/hess-15-2245-2011 (Special issue: Climate, weather and hydrology of East African Highlands)
Mango L, Melesse AM, McClain ME, Gann D, Setegn SG (2011b) Hydro-meteorology and water budget of Mara River basin, Kenya: a land use change scenarios analysis. In: Melesse A (ed) Nile River Basin: hydrology, climate and water use. Springer Science Publisher, Berlin, Chapter 2, pp 39–68. doi:10.1007/978-94-007-0689-7_2
Google Scholar
McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Google Scholar
Mekonnnen K, Tadele K (2012) Analyzing the impact of land use and climate changes on soil erosion and stream flow in the Upper Gilgel Abbay Catchment, Ethiopia Ohrid, Republic of Macedonia, pp 1–13
Google Scholar
Melesse AM (2011) Nile River Basin: hydrology, climate and water use. Springer Science & Business Media, Berlin
CrossRef
Google Scholar
Melesse AM, Loukas AG, Senay G, Yitayew M (2009a) Climate change, land-cover dynamics and ecohydrology of the Nile River Basin. Hydrol Process 23(26):3651–3652
CrossRef
Google Scholar
Melesse A, Abtew W, Desalegne T, Wang X (2009b) Low and high flow analysis and wavelet application for characterization of the Blue Nile River System. Hydrol Process 24(3):241–252
Google Scholar
Melesse A, Abtew W, Setegn S, Dessalegne T (2011a) Hydrological variability and climate of the Upper Blue Nile River Basin. In: Melesse A (ed) Nile River Basin: hydrology, climate and water use. Springer Science Publisher, Berlin, Chapter 1, pp 3–37. doi:10.1007/978-94-007-0689-7_1
Google Scholar
Melesse A, Bekele S, McCornick P (2011b) Hydrology of the Niles in the face of land-use and
839 climate dynamics. In: Melesse A (ed) Nile River Basin: hydrology, climate and water use.
840 Springer Science Publisher, Berlin, pp vii–xvii. doi:10.1007/978-94-007-0689-7
Google Scholar
Melesse A, Abtew W, Setegn SG (2014) Nile River Basin: ecohydrological challenges, climate change and hydropolitics. Springer Science & Business Media, Berlin
CrossRef
Google Scholar
Mohammed, H., Alamirew, T., Assen, M., Melesse, A.M 2015. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia, CATENA, 127, 191–205
Google Scholar
Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Clim 12:2256–2284
CrossRef
Google Scholar
Nakicenovic N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T (2000) Special report on emissions scenarios: a special report of working group III of the Intergovernmental Panel on Climate Change. Pacific Northwest National Laboratory, Richland, WA (US), Environmental Molecular Sciences Laboratory (US)
Google Scholar
Neitsch SL, Arnold JG, Kiniry JR, Williams JR, Williams JR, King KW (2005) Soil and water assessment tool: theoretical documentation, version 2005. Texas, USA
Google Scholar
Parry ML (2007) Climate change 2007: impacts, adaptation and vulnerability: working group I contribution to the 4th assessment report of the IPCC. Cambridge University Press, Cambridge
Google Scholar
Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of SWAT model on a large RWER basin with point and nonpoint sources. JAWRA J Am Water Resour Assoc 37:1169–1188
CAS
CrossRef
Google Scholar
Santoso H, Idinoba M, Imbach P (2008) Climate scenarios: what we need to know and how to generate them. CIFOR Working Paper
Google Scholar
Schulze RE (1997) Impacts of global climate change in a hydrologically vulnerable region: challenges to South African hydrologists. Prog Phys Geogr 21:113–136
CrossRef
Google Scholar
Setegn S, Melesse, AM (2014) Climate change impact on water resources and adaptation strategies in the Blue Nile River Basin, In: Melesse AM, Abtew W, Setegn S (eds) Nile River Basin: ecohydrological challenges, climate change and hydropolitics. Springer, Berlin, pp 389–420
Google Scholar
Setegn SG, Srinivasan R, Dargahi B, Melesse AM (2009a) Spatial delineation of soil erosion prone areas: application of SWAT and MCE approaches in the Lake Tana Basin, Ethiopia. Hydrol Process 23(26):3738–3750 (Special issue: Nile Hydrology)
Google Scholar
Setegn SG, Srinivasan R, Melesse AM, Dargahi B (2009b) SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrol Process 24(3):357–367
Google Scholar
Setegn SG, Bijan Dargahi B, Srinivasan R, Melesse AM (2010) Modelling of sediment yield from Anjeni Gauged Watershed, Ethiopia Using SWAT. JAWRA 46(3):514–526
CAS
Google Scholar
Setegn SG, Rayner D, Melesse AM, Dargahi B, Srinivasan R (2011) Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour Res 47:W04511
Google Scholar
Soliman ESA, Sayed MAA, Jeuland M (2009) Impact assessment of future climate change for the Blue Nile basin using a RCM nested in a GCM. Nile Basin Water Eng Sci Mag 2:15–30
Google Scholar
Solomon S (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge
Google Scholar
Tadege A (2001) Initial national communication of Ethiopia to the United Nations framework convention on climate change (UNFCCC) National Meteorological Services Agency. Addis Ababa, Ethiopia
Google Scholar
Tafffese T (2012) Physically based rainfall: runoff modelling in the northern Ethiopian highlands: The case of Mizewa watershed. MSc Thesis, Bahir Dar University
Google Scholar
Tarekegn D, Tadege A (2006) Assessing the impact of climate change on the water resources of the Lake Tana sub-basin using the WATBAL model. Discuss. Pap, 30
Google Scholar
Taye MT, Ntegeka V, Ogiramoi NP, Williams P (2011) Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol Earth Syst Sci 15:209–222
CrossRef
Google Scholar
Thorpe AJ (2005) Climate change prediction: a challenging scientific problem. Institute of Physics
Google Scholar
Von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Clim 6:1161–1171
CrossRef
Google Scholar
Wale A (2008) Hydrological balance of Lake Tana Upper Blue Nile Basin, Ethiopia. ITC Thesis 2008:159–180
Google Scholar
Wang X, Melesse AM (2005) Evaluations of the SWAT model’s snowmelt hydrology in a Northwestern Minnesota Watershed. Trans ASAE 48(4):1359–1376
CrossRef
Google Scholar
Wang X, Melesse AM (2006) Effects of STATSGO and SSURGO as inputs on SWAT model’s snowmelt simulation. J Am Water Resour Assoc 42(5):1217–1236
CrossRef
Google Scholar
Wang X, Melesse AM, Yang W (2006) Influences of potential evapotranspiration estimation methods on SWAT’s hydrologic simulation in a Northwestern Minnesota Watershed. Trans ASAE 49(6):1755–1771
CrossRef
Google Scholar
Wang X, Shang S, Yang W, Melesse AM (2008a) Simulation of an agricultural watershed using an improved curve number method in SWAT. Trans Am Soc Agri Bio Eng 51(4):1323–1339
Google Scholar
Wang X, Yang W, Melesse AM (2008b) Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans Am Soc Agri Bio Eng 51(1):55–72
Google Scholar
Wang X, Garza J, Whitney M, Melesse AM, Yang W (2008c) Prediction of sediment source areas within watersheds as affected by soil data resolution. In: Paul NF (ed) Environmental modelling: new research. Nova Science Publishers, Inc., Hauppauge, Ch. 7, pp 151–185. ISBN: 978-1-60692-034-3
Google Scholar
White ER, Easton ZM, Fuka DR, Steenhuts TS (2009) SWAT-WB theoretical documentation. Soil and Water Lab, department of biological and Environmental engineering, Cornell University, Ithaca, NY
Google Scholar
Wilby RL, Dawson CW (2007) Statistical Downscaling Model (SDSM), Version 4.2, A decision support tool for the assessment of regional climate change impacts. United Kingdom
Google Scholar
Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17:145–157
CrossRef
Google Scholar
Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC task group on data and scenario support for impacts and climate analysis
Google Scholar
Williams JR, Hann RW (1973) HYMO: problem-oriented language for hydrologic modeling-User’s manual. USDA. ARS-S-9, 45
Google Scholar
Xu CY (1999) From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches. Prog Phys Geogr 23:229–249
CrossRef
Google Scholar
Xu CY, Widen E, Halldin S (2005) Modelling hydrological consequences of climate change—progress and challenges. Adv Atmos Sci 22:789–797
CrossRef
Google Scholar
Yitayew M, Melesse AM (2011) Critical water resources management issues in Nile River Basin. In: Melesse A (ed) Nile River Basin: hydrology, climate and water use. Springer Science Publisher, Berlin, Chapter 20, pp 401–416. doi:10.1007/978-94-007-0689-7_20
Google Scholar