Network Capacity Bound for Personalized Bipartite PageRank

  • Mieczysław A. KłopotekEmail author
  • Sławomir T. Wierzchoń
  • Robert A. Kłopotek
  • Elżbieta A. Kłopotek
Part of the Studies in Computational Intelligence book series (SCI, volume 605)


In this paper a novel notion of Bipartite PageRank is introduced and limits of authority flow in bipartite graphs are investigated. As a starting point we simplify the proof of a theorem on personalized random walk in unimodal graphs that is fundamental to graph nodes clustering. As a consequence we generalize this theorem to bipartite graphs.


Bipartite graphs Social networks PageRank 



This research has been supported by the Polish State budget scientific research funds.


  1. 1.
    Bauckhage C (2008) Image tagging using pagerank over bipartite graphs. In: Proceedings of the 30th DAGM symposium on pattern recognition, pp 426–435. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-69321-5_43
  2. 2.
    Berkhin P (2005) A survey on PageRank computing. Internet Math 2:73–120MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chung F (2011) Pagerank as a discrete Green’s function. In: Ji L (ed) Geometry and analysis, I, Advanced lectures in mathematics (ALM), vol 17, pp 285–302. International Press of Boston, BostonGoogle Scholar
  4. 4.
    Deng H, Lyu MR, King I (2009) A generalized co-hits algorithm and its application to bipartite graphs. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’09, pp 239–248. ACM, New York, NY, USA, Paris, June 28–July 1 2009 doi: 10.1145/1557019.1557051
  5. 5.
    Frahm K, Georgeot B, Shepelyansky D (2011) Universal emergence of PageRank. J Phys A Math Theor 44:465101. doi: 10.1088/1751-8113/44/46/465101 CrossRefGoogle Scholar
  6. 6.
    Garcia E, Pedroche F, Romance M (2013) On the localization of the personalized PageRank of complex networks. Linear Algebra Appl 439:640–652MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Langville AN (2005) An annotated bibliography of papers about Markov chains and information retrieval.
  8. 8.
    Langville AN, Meyer CD (2006) Google’s PageRank and beyond: the science of search engine rankings. Princeton University Press, PrincetonGoogle Scholar
  9. 9.
    Link S (2011) Eigenvalue-based bipartite ranking. Bachelorarbeit/bachelor thesis.
  10. 10.
    Meghabghab G, Kandel A (2008) Search engines, link analysis, and user’s web behavior. A unifying web mining approach, Studies in computational intelligence, vol 99. Springer, New YorkGoogle Scholar
  11. 11.
    Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Technical Report 1999–66, Stanford InfoLab.
  12. 12.
    Zachary W (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mieczysław A. Kłopotek
    • 1
    • 3
    Email author
  • Sławomir T. Wierzchoń
    • 1
  • Robert A. Kłopotek
    • 2
  • Elżbieta A. Kłopotek
    • 4
  1. 1.Institute of Computer Science of Polish Academy of SciencesWarszawaPoland
  2. 2.International PhD. Programme at ICS PASWarszawaPoland
  3. 3.Institute of Computer Science of Natural and Human Sciences UniversitySiedlcePoland
  4. 4.m-BankWarszawaPoland

Personalised recommendations