Fuzzy Natural Logic: Towards Mathematical Logic of Human Reasoning

  • Vilém NovákEmail author
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 325)


One of the often repeated proclaims appearing in the papers on fuzzy sets and fuzzy logic is their ability to model semantics of some linguistic expressions so that the inherent vagueness of the former is also captured. Recall that this direction of research was initiated by L.A. Zadeh already in his early papers and since then, most of the applications of fuzzy sets emphasize presence of natural language, at least in hidden form. In this paper we argue that the potential of fuzzy set theory and fuzzy logic is strong enough to enable developing not only a working model of linguistic semantics but even more—to develop a model of natural human reasoning that proceeds in natural language. We bring forward the concept of fuzzy natural logic (FNL) that is a mathematical theory whose roots lay in the concept of natural logic developed by linguists and logicians. Of course, this cannot be realized without cooperation with linguists. On the other hand, it seems reasonable not to try to solve all the problems raised by the linguistic research but rather to develop a simplified model that would capture the main features of the semantics of natural language and thus made it possible to realize sophisticated technical applications. In the paper, we will show that basic formalism of FNL has already been established and has potential for further development. We also outline how model of the meaning of basic constituents of natural language (nouns, adjectives, adverbs, verbs) can be developed and the human-like reasoning can proceed.


Natural Language Noun Phrase Linguistic Expression Gradable Adjective Linguistic Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).


  1. 1.
    Andrews, P.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  2. 2.
    Barker, C.: The dynamics of vagueness. Linguist. Philos. 25(1), 1–36 (2002)CrossRefGoogle Scholar
  3. 3.
    Beelsey, K.: Evaluative adjectives as one-place predicates in Montague grammar. J. Semant. 3–4, 195–249 (1982)Google Scholar
  4. 4.
    Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Davis, E., Morgenstern, L.: Introduction: progress in formal commonsense reasoning. Artif. Intell. 153, 1–12 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Dowty, D.: Word Meaning and Montague Grammar: The Semantics of Verbs and Times in Generative Semantics and in Montague’s PTQ. Springer, Berlin (1979)Google Scholar
  7. 7.
    Duží, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional Logic. Springer, Dordrecht (2010)Google Scholar
  8. 8.
    Dvořák, A., Novák, V.: Fuzzy logic deduction with crisp observations. Soft Comput. 8, 256–263 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dvořák, A., Holčapek, M.: L-fuzzy quantifiers of the type \(\langle 1\rangle \) determined by measures. Fuzzy Sets Syst. 160, 3425–3452 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dvořák, A., Novák, V.: Formal theories and linguistic descriptions. Fuzzy Sets Syst. 143, 169–188 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dvořák, A., Novák, V.: Towards automatic modeling of economic texts. Mathw. Soft Comput. XIV(3), 217–231 (2007)Google Scholar
  12. 12.
    Glöckner, I.: Fuzzy Quantifiers: A Computational Theory. Springer, Berlin (2006)Google Scholar
  13. 13.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hajičová, E., Partee, B.H., Sgall, P.: Topic-Focus Articulation, Tripartite Structures, and Semantics Content. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  15. 15.
    Holčapek, M.: Monadic L-fuzzy quantifiers of the type \(\langle 1^n, 1\rangle \). Fuzzy Sets Syst. 159, 1811–1835 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, Chichester (1999)zbMATHGoogle Scholar
  17. 17.
    Kacprzyk, J., Wilbik, A.: Zadrożny: linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets Syst. 159, 1485–1499 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Keenan, E., Westerstahl, D.: Quantifiers in formal and natural languages. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 837–893. Elsevier, Amsterdam (1997)CrossRefGoogle Scholar
  19. 19.
    Kennedy, C.: Vagueness and grammar: the semantics of relative and absolute gradable adjectives. Linguist. Philos. 30(3), 1–45 (2007)CrossRefGoogle Scholar
  20. 20.
    Kerre, E., De Cock, M.: Linguistic modifiers: an overview. In: Martinez, J. (ed.) Fuzzy Logic and Soft Computing, pp. 69–86. Kluwer Academic, Boston (1999)CrossRefGoogle Scholar
  21. 21.
    Lakoff, G.: Linguistics and natural logic. Synthese 22, 151–271 (1970)CrossRefzbMATHGoogle Scholar
  22. 22.
    Lakoff, G.: Hedges: a study in meaning criteria and logic of fuzzy concepts. J. Philos. Log. 2, 458–508 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Lawry, J., Qin, Z.: LFOIL: linguistic rule induction in the label semantics framework. Fuzzy Sets Syst. 159, 435–448 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)zbMATHMathSciNetGoogle Scholar
  25. 25.
    MacCartney, B., Manning, C.D.: An extended model of natural logic. In: IWCS-8’09 Proceedings of Eighth International Conference on Computational Semantics, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 140–156 (2009)Google Scholar
  26. 26.
    Martínez, L., Ruan, D., Herrera, F.: Computing with words in decision support systems: an overview on models and applications. Int. J. Comput. Intell. Syst. 3, 382–395 (2010)CrossRefGoogle Scholar
  27. 27.
    Materna, P.: Concepts and objects. Ada Phil. Fennica, vol. 63. Helsinki (1998)Google Scholar
  28. 28.
    Materna, P.: Conceptual Systems. Logos Verlag, Berlin (2004)zbMATHGoogle Scholar
  29. 29.
    McCarthy, J.: Programs with common sense. In: Proceedings of the Teddington Conference on Mechanization of Thought Processes, pp. 75–91. Her Majesty’s Stationery Office, London (1959)Google Scholar
  30. 30.
    Morenberg, M.: Doing Grammar. Oxford University Press, Oxford (1997)Google Scholar
  31. 31.
    Mostowski, A.: On a generalization of quantifiers. Fundam. Math. 44, 12–36 (1957)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Murinová, P., Novák, V.: A formal theory of generalized intermediate syllogisms. Fuzzy Sets Syst. 186, 47–80 (2012)CrossRefzbMATHGoogle Scholar
  33. 33.
    Novák, V.: The Alternative Mathematical Model of Linguistic Semantics and Pragmatics. Plenum, New York (1992)CrossRefzbMATHGoogle Scholar
  34. 34.
    Novák, V.: Fuzzy logic deduction with words applied to ancient sea level estimation. In: Demicco, R., Klir, G. (eds.) Fuzzy Logic in Geology, pp. 301–336. Academic Press, Amsterdam (2003)Google Scholar
  35. 35.
    Novák, V.: On fuzzy type theory. Fuzzy Sets Syst. 149, 235–273 (2005)CrossRefzbMATHGoogle Scholar
  36. 36.
    Novák, V.: Perception-based logical deduction. In: Reusch, B. (ed.) Computational Intelligence, Theory and Applications, pp. 237–250. Springer, Berlin (2005)CrossRefGoogle Scholar
  37. 37.
    Novák, V.: Fuzzy logic theory of evaluating expressions and comparative quantifiers. In: Proceedings of 11th International Conference IPMU, Paris, July, vol. 2, pp. 1572–1579. Éditions EDK, Les Cordeliers, Paris (2006)Google Scholar
  38. 38.
    Novák, V.: Mathematical fuzzy logic in modeling of natural language semantics. In: Wang, P., Ruan, D., Kerre, E. (eds.) Fuzzy Logic—A Spectrum of Theoretical & Practical Issues, pp. 145–182. Elsevier, Berlin (2007)Google Scholar
  39. 39.
    Novák, V.: A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets Syst. 159(22), 2939–2969 (2008)CrossRefzbMATHGoogle Scholar
  40. 40.
    Novák, V.: A formal theory of intermediate quantifiers. Fuzzy Sets Syst. 159(10), 1229–1246 (2008)CrossRefzbMATHGoogle Scholar
  41. 41.
    Novák, V.: Genuine linguistic fuzzy logic control: powerful and successful control method. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) Computational Intelligence for Knowledge-Based Systems Design. LNAI, vol. 6178, pp. 634–644. Springer, Berlin (2010)Google Scholar
  42. 42.
    Novák, V.: On virtues of many-valued (fuzzy) type theories. In: Cau, B., Wang, G., Chen, S., Guo, S. (eds.) Quantitative Logic and Soft Computing, vol. 2, pp. 53–69. Springer, Berlin (2010)Google Scholar
  43. 43.
    Novák, V.: EQ-algebra-based fuzzy type theory and its extensions. Log. J. IGPL 19, 512–542 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Novák, V.: On modelling with words. Int. J. Gen. Syst. 42, 21–40 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Novák, V., Dvořák, A.: Formalization of commonsense reasoning in fuzzy logic in broader sense. J. Appl. Comput. Math. 10, 106–121 (2011)zbMATHGoogle Scholar
  46. 46.
    Novák, V., Lehmke, S.: Logical structure of fuzzy IF-THEN rules. Fuzzy Sets Syst. 157, 2003–2029 (2006)CrossRefzbMATHGoogle Scholar
  47. 47.
    Novák, V., Perfilieva, I.: On the semantics of perception-based fuzzy logic deduction. Int. J. Intell. Syst. 19, 1007–1031 (2004)CrossRefzbMATHGoogle Scholar
  48. 48.
    Novák, V., Perfilieva, I., Jarushkina, N.G.: A general methodology for managerial decision making using intelligent techniques. In: Rakus-Anderson, E., Yager, R., Ichalkaranje, N., Jain, L. (eds.) Recent Advances in Fuzzy Decision-Making, pp. 103–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  49. 49.
    Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)CrossRefzbMATHGoogle Scholar
  50. 50.
    Novák, V., Štěpnička, M., Dvořák, A., Perfilieva, I., Pavliska, V., Vavříčková, L.: Analysis of seasonal time series using fuzzy approach. Int. J. Gen. Syst. 39, 305–328 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Novák, V., Štěpnička, M., Kupka, J.: Linguistic descriptions: their structure and applications. In: Proceedings of International Conference FQAS 2013, Granada, Spain (2013)Google Scholar
  52. 52.
    Novák, V., Štěpnička, M., Perfilieva, I., Pavliska, V.: Analysis of periodical time series using soft computing methods. In: Ruan, D., Montero, J., Lu, J., Martínez, L., D’hondt, P., Kerre, E. (eds.) Computational Intelligence in Decision and Control, pp. 55–60. World Scientific, New Jersey (2008)Google Scholar
  53. 53.
    Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets Syst. 157, 993–1023 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Clarendon Press, Oxford (2006)Google Scholar
  55. 55.
    Peterson, P.: Intermediate Quantifiers. Logic, linguistics, and Aristotelian Semantics. Ashgate, Aldershot (2000)Google Scholar
  56. 56.
    Rotstein, C., Winter, Y.: Total adjectives vs. partial adjectives: scale structure and higher-order modifiers. Nat. Lang. Semant. 12, 259–288 (2004)CrossRefGoogle Scholar
  57. 57.
    Sgall, P., Hajičová, E., Panevová, J.: The Meaning of the Sentence in Its Syntactic and Pragmatic Aspects. D. Reidel, Dordrecht (1986)Google Scholar
  58. 58.
    van Benthem, J.: A brief history of natural logic. In: Chakraborty, M., Löwe, B., Nath Mitra, M., Sarukkai, S. (eds.) Logic, Navya-Nyaya and Applications, Homage to Bimal Krishna Matilal. College Publications, London (2008)Google Scholar
  59. 59.
    van Deemter, K.: Generating referring expressions that involve gradable properties. Comput. Linguist. 32(2), 195–222 (2006)CrossRefzbMATHGoogle Scholar
  60. 60.
    van Rooij, R.: Vagueness and linguistics. In: Ronzitti, G. (ed.) Vagueness: A Guide, pp. 123–170. Springer, Berlin (2011)Google Scholar
  61. 61.
    Westerståhl, D.: Quantifiers in formal and natural languages. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. IV, pp. 1–131. D. Reidel, Dordrecht (1989)CrossRefGoogle Scholar
  62. 62.
    Ying, M., Bouchon-Meunier, B.: Quantifiers, modifiers and qualifiers in fuzzy logic. J. Appl. Non-Class. Log. 7, 335–342 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Zadeh, L.: Test-score semantics for natural languages. In: COLING’82, Prague, pp. 425–430 (1982)Google Scholar
  64. 64.
    Zadeh, L., Kacprzyk, J.E. (eds.): Computing with Words in Information/Intelligent Systems, vol. 1. Springer, Heidelberg (1999)Google Scholar
  65. 65.
    Zadeh, L.A.: Quantitative fuzzy semantics. Inf. Sci. 3, 159–176 (1973)CrossRefMathSciNetGoogle Scholar
  66. 66.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I, II, III. Inf. Sci. 8–9, 199–257, 301–357, 43–80 (1975)Google Scholar
  67. 67.
    Zadeh, L.A.: Commonsense knowledge representation based on fuzzy logic. IEEE Comput. Mag. 16, 61–65 (1983)CrossRefGoogle Scholar
  68. 68.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. 9, 149–184 (1983)zbMATHMathSciNetGoogle Scholar
  69. 69.
    Zadeh, L.A.: Fuzzy logic \(=\) computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  70. 70.
    Zadeh, L.A.: Precisiated natural language. AI Mag. 25, 74–91 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Research and Applications of Fuzzy Modelling Centre of Excellence IT4InnovationsUniversity of OstravaOstrava 1Czech Republic

Personalised recommendations