Linguistic Summaries of Time Series: A Powerful and Prospective Tool for Discovering Knowledge on Time Varying Processes and Systems

  • Janusz KacprzykEmail author
  • Sławomir Zadrożny
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 325)


We provide a critical state of the art survey of linguistic data summarization in its fuzzy logic based version, meant as a process for a comprehensive description of big and complex data sets via short statements in natural language. These statements are represented by protoforms in the form of linguistically quantified propositions dealt with using tools and techniques of fuzzy logic to grasp an inherent imprecision of natural language that is very difficult, if not impossible, for traditional natural language generation related approaches to linguistic summarization. Such linguistic data summaries can provide a human user, whose only natural means of articulation and communication is natural language, with a simple yet effective and efficient means for the representation and manipulation of knowledge about processes and systems. We concentrate on the linguistic summarization of dynamic processes and systems, dealing with data represented as time series. We extend the basic, static data oriented concept of a linguistic data summary to the case of time series data, present various possible protoforms of linguistic summaries, and an analysis of their properties and ways of generation. We show two our own real applications of the new tools of linguistic summarization of time series, for the summarization of quotations of an investment (mutual) fund, and of Web server logs, to show the power of the tool. We also mention some other applications known from the literature. We conclude with some remarks on the strength of the linguistic summarization for broadly perceived data mining and knowledge discovery, emphasize its potentials, and outline some possible further research directions, being strongly convinced that the fuzzy logic based approach to linguistic summarization of time series is one of more important areas in which fuzzy logic can play a crucial role in the years to come.


Linguistic summarization Natural language Fuzzy logic Linguistic quantifiers Data mining Knowledge discovery Big data sets 



This work was supported by the National Centre of Science under Grant No. UMO-2012/05/B/ST6/03068.


  1. 1.
    Abraham, A.: Miner: a web usage mining framework using hierarchical intelligent systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’03, pp. 1129–1134 (2003)Google Scholar
  2. 2.
    Alvarez-Alvarez, A., Sánchez-Valdes, D., Triviño, G., Sánchez, Á., Suárez, P.D.: Automatic linguistic report of traffic evolution in roads. Expert Syst. Appl. 39(12), 11293–11302 (2012)CrossRefGoogle Scholar
  3. 3.
    Anderson, D., Luke, R.H., Keller, J.M., Skubic, M., Rantz, M., Aud, M.: Linguistic summarization of video for fall detection using voxel person and fuzzy logic. Comput. Vis. Image Underst. 1(113), 80–89 (2009)CrossRefGoogle Scholar
  4. 4.
    Arotaritei, D., Mitra, S.: Web mining: a survey in the fuzzy framework. Fuzzy Sets Syst. 148(1), 5–19 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Asharaf, S., Murty, M.N.: A rough fuzzy approach to web usage categorization. Fuzzy Sets Syst. 148(1), 119–129 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Batyrshin, I., Sheremetov, L.: Perception based functions in qualitative forecasting. In: Batyrshin, I., Kacprzyk, J., Sheremetov, L., Zadeh, L.A. (eds.) Perception-based Data Mining and Decision Making in Economics and Finance. Springer, Berlin (2006)Google Scholar
  7. 7.
    Batyrshin, I., Sheremetov, L.: Towards perception based time series data mining. In: Nikravesh, M., Kacprzyk, J., Zadeh, L.A. (eds.) Forging New Frontiers. Fuzzy Pioneers I, pp. 217–230. Springer, Berlin (2007)CrossRefGoogle Scholar
  8. 8.
    Bosc, P., Lietard, L., Pivet, O.: Quantified statements and database fuzzy queries. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems. Springer, Berlin (1995)CrossRefGoogle Scholar
  9. 9.
    Castillo-Ortega, R., Marín, N., Sánchez, D.: Time series comparison using linguistic fuzzy techniques. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) Computational Intelligence for Knowledge-Based Systems Design. Proceedings of 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010. Lecture Notes in Computer Science, vol. 6178, pp. 330–339. Springer, New York (2010)Google Scholar
  10. 10.
    Castillo-Ortega, R., Marín, N., Sánchez, D.: A fuzzy approach to the linguistic summarization of time series. Mult.-Valued Log. Soft Comput. 17(2–3), 157–182 (2011)Google Scholar
  11. 11.
    De, S.K., Krishna, P.R.: Clustering web transactions using rough approximation. Fuzzy Sets Syst. 148(1), 131–138 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dertouzos, M.: The Unfinished Revolution: human-Centered Computers and What They Can Do For Us. HarperCollins, New York (2001)Google Scholar
  13. 13.
    Dziedzic, M., Zadrozny, S., Kacprzyk, J.: Towards bipolar linguistic summaries: a novel fuzzy bipolar querying based approach. In: IEEE International Conference on Fuzzy Systems, Brisbane, Australia, 10–15 June 2012, Proceedings, pp. 1-8. IEEE (2012)Google Scholar
  14. 14.
    Grabisch, M.: Fuzzy integral as a flexible and interpretable tool of aggregation. In: Bouchon-Meunier, B. (ed.) Aggregation and Fusion of Imperfect Information, pp. 51–72. Physica-Verlag, New York (1998)CrossRefGoogle Scholar
  15. 15.
    Kacprzyk, J., Wilbik, A.: Linguistic summaries of time series: on some additional data independent quality criteria. In: Bouchon-Meunier, B., Magdalena, L., Ojeda-Aciego, M., Verdegay, J.L., Yager, R.R. (eds.) Foundations of Reasoning Under Uncertainty, pp. 143–166. Springer, Berlin (2010)CrossRefGoogle Scholar
  16. 16.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of trends: a fuzzy logic based approach. In: Proceedings of the 11th International Conference Information Processing and Management of Uncertainty in Knowledge-based Systems, pp. 2166–2172 (2006)Google Scholar
  17. 17.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summaries of time series via an OWA operator based aggregation of partial trends. In: Proceedings of the FUZZ-IEEE 2007 IEEE International Conference on Fuzzy Systems, pp. 467–472. IEEE Press (2007)Google Scholar
  18. 18.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets Syst. 159(12), 1485–1499 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: An approach to the linguistic summarization of time series using a fuzzy quantifier driven aggregation. Int. J. Intell. Syst. 25(5), 411–439 (2010)zbMATHGoogle Scholar
  20. 20.
    Kacprzyk, J., Yager, R.R.: Linguistic summaries of data using fuzzy logic. Int. J. Gen. Syst. 30, 33–154 (2001)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguistic summaries of databases. Int. J. Appl. Math. Comput. Sci. 10, 813–834 (2000)zbMATHGoogle Scholar
  22. 22.
    Kacprzyk, J., Zadrożny, S.: Computing with words in decision making through individual and collective linguistic choice rules. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9(Supplement), 89–102 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms: toward natural language based knowledge discovery tools. Inf. Sci. 173, 281–304 (2005)CrossRefGoogle Scholar
  24. 24.
    Kacprzyk, J., Zadrożny, S.: Computing with words and systemic functional linguistics: linguistic data summaries and natural language generation. In: Huynh, V.N., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds.) Integrated Uncertainty Management and Applications. Advances in Intelligent and Soft Computing, vol. 68, pp. 23–36. Springer, Berlin (2010)Google Scholar
  25. 25.
    Kacprzyk, J., Zadrożny, S.: Computing with words is an implementable paradigm: fuzzy queries, linguistic data summaries, and natural-language generation. IEEE Trans. Fuzzy Syst. 18(3), 461–472 (2010)CrossRefGoogle Scholar
  26. 26.
    Kacprzyk, J., Zadrożny, S.: Derivation of linguistic summaries is inherently difficult: can association rule mining help? In: Borgelt, C., Ángeles Gil Alvarez, M., Sousa, J.M.D.C., Verleysen, M. (eds.) Towards Advanced Data Analysis by Combining Soft Computing and Statistics, pp. 291–303. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Kacprzyk, J., Zadrożny, S.: Fuzzy linguistic summaries via association rules. In: Kandel, A., Last, M., Bunke, H. (eds.) Data mining and Computational Intelligence, pp. 115–139. Physica-Verlag, New York (2001)CrossRefGoogle Scholar
  28. 28.
    Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Proceedings of the 2001 IEEE International Conference on Data Mining (2001)Google Scholar
  29. 29.
    Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. In: Last, M., Kandel, A., Bunke, H. (eds.) Data Mining in Time Series Databases. World Scientific Publishing, London (2004)Google Scholar
  30. 30.
    Pal, S.K., Talwar, V., Mitra, P.: Web mining in soft computing framework: relevance. IEEE Trans. Neural Netw. 13(5), 1163–1177 (2002)CrossRefGoogle Scholar
  31. 31.
    Pedrycz, W., Gomide, F.A.C.: Fuzzy Systems Engineering—Toward Human-Centric Computing. Wiley (2007)Google Scholar
  32. 32.
    Ros, M., Pegalajar, M., Delgado, M., Vila, A., Anderson, D.T., Keller, J.M., Popescu, M.: Linguistic summarization of long-term trends for understanding change in human behavior. In: Proceedings of the IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’2011, pp. 2080–2087 (2011)Google Scholar
  33. 33.
    Shiu, S.C.K., Wong, C.K.P.: Web access path prediction using fuzzy case based reasoning. In: R. Khosla, R.J. Howlett, L.C. Jain (eds.) KES (3). Lecture Notes in Computer Science, vol. 3683, pp. 135–140. Springer, Berlin (2005)Google Scholar
  34. 34.
    Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves. Pattern Recognit. 12(5), 327–331 (1980)CrossRefGoogle Scholar
  35. 35.
    Wang, X., Abraham, A., Smith, K.A.: Soft computing paradigms for web access pattern analysis. In: L. Wang, S.K. Halgamuge, X. Yao (eds.) FSKD, pp. 631–635 (2002)Google Scholar
  36. 36.
    Wang, X., Abraham, A., Smith, K.A.: Intelligent web traffic mining and analysis. J. Netw. Comput. Appl. 28(2), 147–165 (2005)CrossRefGoogle Scholar
  37. 37.
    Yager, R.R.: A new approach to the summarization of data. Inf. Sci. 28, 69–86 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. SMC 18, 183–190 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Yager, R.R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11, 49–73 (1996)CrossRefGoogle Scholar
  40. 40.
    Yager, R.R., Kacprzyk, J. (eds.): The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer, Boston (1997)Google Scholar
  41. 41.
    Yager, R.R., Kacprzyk, J., Beliakov, G. (eds.): Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Studies in Fuzziness and Soft Computing, vol. 265. Springer, Berlin (2011)Google Scholar
  42. 42.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 9(2), 111–127 (1983)MathSciNetGoogle Scholar
  43. 43.
    Zadrożny, S., Kacprzyk, J.: From a static to dynamic analysis of weblogs via linguistic summaries. In: IFSA-2011 (2007)Google Scholar
  44. 44.
    Zadrożny, S., Kacprzyk, J.: Summarizing the contents of web server logs: a fuzzy linguistic approach. In: FUZZ-IEEE, pp. 1–6. IEEE (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Warsaw School of Information TechnologyWarsawPoland

Personalised recommendations