Advertisement

Fuzzy Concepts and Fuzzy Logic in Historical and Genetic Epistemology

  • Rudolf SeisingEmail author
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 325)

Abstract

This paper discusses epistemology in two variations: Genetic and Historical Epistemology. Historical Epistemology combines research in history and philosophy of science to study developments in scientific research whereas Genetic Epistemology is the study of the cognitive development in childhood. We consider Kuhn’s theory of scientific paradigms and paradigm changes on the one hand and Piagest’s Genetic Epistemology of cognitive development on the other. We present parallels of these two structuralist approaches and we introduce “unsharp concepts” into these views. Then the paper throws a glance at their fuzzy extensions. Because of these “fuzzifications” we make an argument for using fuzzy instead of crisp concepts in Genetic and Historical Epistemology.

Keywords

Fuzzy Logic Cognitive Development Scientific Theory Scientific Revolution Fuzzy Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work leading to this paper was partially supported by the Foundation for the Advancement of Soft Computing Mieres, Asturias (Spain).

References

  1. 1.
    Belohlavek, R., Klir, G.J. (eds.): Concepts and Fuzzy Logic. The MIT Press, Cambridge (2011)zbMATHGoogle Scholar
  2. 2.
    Anele, D.I.O.: Development in Thomas Kuhn’s theory of perception of similarity relationships in science. Lumina 22(1), 1–25 (2011)Google Scholar
  3. 3.
    Balzer, W., Moulines, C.U., Sneed, J.D.: An Architectonic for Science. The Structuralist Program. Reidel, Dordrecht (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bird, A.: “Thomas Kuhn”. Stanford Encyclopedia of Philosophy. Metaphysics Research Lab at Stanford University. First published Fri Aug 13, 2004; substantive revision Thu Aug 11, (2011). http://plato.stanford.edu/entries/thomas-kuhn/, Accessed February 19, 2015
  5. 5.
    Bourbaki, N (pseudo.): Elements of Mathematics: Theory of Sets, Addison-Wesley, Reading (1968)Google Scholar
  6. 6.
    Dizikes, P.: 3 Questions: David Kaiser on Thomas Kuhn’s paradigm shift. Scholars mark 50th anniversary of ‘The Structure of Scientific Revolutions’, MIT News Office, December 6, (2012). http://newsoffice.mit.edu/2012/3-questions-david-kaiser-on-thomas-kuhns-paradigm-shift-1206 Accessed February 19, 2015
  7. 7.
    Ellington, J.W.: The Unity of Kant’s Thought in his Philosophy of Corporeal Nature, Philosophy of Material Nature. Hackett Publishing Company, Indianapolis (1985)Google Scholar
  8. 8.
    Fölsing, A.: Heinrich Hertz. Hoffmann und Campe, Hamburg (1997)Google Scholar
  9. 9.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle a. S.: Louis Nebert, 1879. Translated as Concept Script, a formal language of pure thought modelled upon that of arithmetic, by S. Bauer-Mengelberg in J. van Heijenoort (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge (1967)Google Scholar
  10. 10.
    Frege, G.: Funktion und Begriff, 1891. In: Patzig, G. (ed) Frege, G.: Funktion, Begriff, Bedeutung, Vandenheoeck & Ruprecht, Göttingen, pp. 18–39 (1986)Google Scholar
  11. 11.
    Frege, G.: Grundgesetze der Arithmetik, vol. 2, Jena: Hermann Pohle, 1893–1903, Bd. II. English translation: Basic Laws of Arithmetic, translated and edited with an introduction by Ebert, P.A., Rossberg, M., Oxford University Press, Oxford (2013)Google Scholar
  12. 12.
    Frege, G.: Nachgelassene Schriften. Meiner, Hamburg (1969)zbMATHGoogle Scholar
  13. 13.
    Freud, S.: Three Essays on the Theory of Sexuality VII, 1905, 2nd edn. Hogarth Press (1955)Google Scholar
  14. 14.
    Goguen, J.A.: Categories of fuzzy sets: applications of a non-cantorian set theory. Ph.D. Thesis. University of California at Berkeley, June 1968Google Scholar
  15. 15.
    Goguen, J.A.: The Logic of Inexact Concepts. Synthese 19, 325–373 (1969)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kant, I.: Critic of Pure Reason, Chapter III. The Architectonic of Pure Reason, The Cambridge Edition of the Works of Immanuel Kant, Cambridge University Press: 1998). http://www.philosophy-index.com/kant/critique_pure_reason/ii_iii.php. Accessed 9.2.2015
  17. 17.
    Kuhn, T.S.: The road since structure: Philosophical essays, 1970–1993. In: Conant, J., Haugeland, J., (eds.) Chicago: University of Chicago Press (2000)Google Scholar
  18. 18.
    Kuhn, T.S.: The Structure of Scientific Revolutions, 1st edn, University of Chicago Press (1962)Google Scholar
  19. 19.
    Kuhn, Thomas S.: The Copernican Revolution: Planetary Astronomy in the Development of Western Thought, Cambridge. Harvard University Press, Massachusetts (1957)Google Scholar
  20. 20.
    Kuhn, ThS: The Essential Tension, pp. 297–308. The University of Chicago Press, Chicago (1977)Google Scholar
  21. 21.
    Lakoff, G.: Hedges: a study in meaning criteria and the logic of fuzzy concepts. J. Philos. Logic 2, 458–508 (1972)MathSciNetGoogle Scholar
  22. 22.
    Loftus, G., et al.: Introduction to Psychology, 15th Edn, London, Cengage, (2009)Google Scholar
  23. 23.
    Machery, E.: Concepts are not a natural kind. Philos. Sci. 72, 444–467 (2005)CrossRefGoogle Scholar
  24. 24.
    MacIsaac, D.: The Pedagogical Implications of Parallels between Kuhn’s Philosophy of Science and Piagets’ Model of Cognitive Development. http://physicsed.buffalostate.edu/danowner/kuhnpiaget/KP1.html
  25. 25.
    Margolis, E., Lawrence, S.: “Concepts”. Stanford Encyclopedia of Philosophy. Metaphysics Research Lab at Stanford University. First published Mon Nov 7, 2005; substantive revision Tue May 17, (2011). Accessed February 19, 2015Google Scholar
  26. 26.
    Merton, R.: Science, Technology and Society in Seventeenth Century England. Osiris IV(2), 360–632 (1938)CrossRefGoogle Scholar
  27. 27.
    Piaget, J., Garcia, R.: Psychogenesis and the History of Science. (H. Fieder, Trans.). Columbia University Press, New York (1988). (Original published in 1983)Google Scholar
  28. 28.
    Piaget, J.: Les notions de mouvement et de vitesse chez l’enfant, Paris (1946)Google Scholar
  29. 29.
    Piaget, J.: The Child’s Conception of Causality, transl. by M. Gabain, London (1930)Google Scholar
  30. 30.
    Rheinberger, H.-J.: “Gene”, Stanford Encyclopedia of Philosophy. Available at: http://plato.stanford.edu/entries/gene/. Accessed 10.2.2015
  31. 31.
    Rheinberger, H.-J.: Experimental complexity in biology: some epistemological and historical remarks. Philosophy of science. In: Proceedings of the 1996 Biennial Meeting of the Philosophy of Science Association, Supplement to, vol. 64(4), pp. 245–254 (1997)Google Scholar
  32. 32.
    Rheinberger, H.-J.: Gene Concepts. Fragments from the perspective of molecular biology. In: Beurton, P., Falk, R., Rheinberger, H.-J. (eds.) The Concept of the Gene in Development and Evolution. pp. 219–239, Cambridge, Cambridge University Press (2000)Google Scholar
  33. 33.
    Rosch, E.: Natural categories. Cogn. Psychol. 4, 328–350 (1973)CrossRefGoogle Scholar
  34. 34.
    Sadegh-Zadeh, K.: Handbook of Analytical Philosophy of Medicine. vol. 113, Springer, Dordrecht (2012). (Philosophy and Medicine)Google Scholar
  35. 35.
    Sadegh-Zadeh, K.: The fuzzy revolution: goodbye to the Aristotelian Weltanschauung. Artif. Intell. Med. 21, 1–25 (2001)CrossRefGoogle Scholar
  36. 36.
    Santrock, J.W.: Life-Span Development, 9th edn. McGraw-Hill College, Boston (2004)Google Scholar
  37. 37.
    Santrock, J.W.: A Topical Approach To Life-Span Development, pp. 211–216. McGraw-Hill, New York (2008)Google Scholar
  38. 38.
    Seising, R.: Between empiricism and rationalism: a layer of perception modeling fuzzy sets as intermediary in philosophy of science. In: Melin, P. et al. (eds.) Theoretical Advances and Applications of Fuzzy Logic and Soft Computing. Proceedings of the IFSA 2007 World Congress Theory and Applications of Fuzzy Logic and Soft Computing,Cancun Mexico, 2007. Berlin, Springer (Advances in Soft Computing 42, LNCS, vol. 4529), pp. 101–108 (2007)Google Scholar
  39. 39.
    Seising, R.: Fuzzy sets and systems and philosophy of science. In: Seising, R., (ed.) Views on Fuzzy Sets and Systems. pp. 1–35, Springer, Berlin (2009)Google Scholar
  40. 40.
    Seising, R.: Interview with G. Lakoff, August 6, 2002, UC Berkeley, Dwinell HallGoogle Scholar
  41. 41.
    Seising, R.: Interview with L. A. Zadeh, July, 26, 2000,UC Berkeley, Soda Hall, see [40]Google Scholar
  42. 42.
    Seising, R.: Scientific theories and the computational theory of perceptions: a structuralist view including fuzzy sets. In: Stepnika, M, et al. (eds.) New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th EUSFLAT Conference, Ostrava, Czech Republic, vol. 1, pp. 401–408 ( 2007)Google Scholar
  43. 43.
    Seising, R.: The Fuzzification of Systems. The Genesis of Fuzzy Set Theory and Its Initial Applications—Developments up to the 1970s, Springer, Berlin (2007)Google Scholar
  44. 44.
    Sneed, J.D.: The Logical Structure of Mathematical Physics. Reidel, Dordrecht (1971)CrossRefGoogle Scholar
  45. 45.
    Stegmüller, W.: The Structure and Dynamics of Theories. Springer, New York (1976)CrossRefzbMATHGoogle Scholar
  46. 46.
    Steup, M.: “Epistemology”, The Stanford Encyclopedia of Philosophy (Winter 2013 Edition). http://plato.stanford.edu/archives/win2013/entries/epistemology/. Accessed 9.2. 2015
  47. 47.
    Suppes, P.: A set of independent axioms for extensive quantities (1951). See: http://suppes-corpus.stanford.edu/browse.html?c=mpm&d=1950
  48. 48.
    Suppes, P.: Some remarks on problems and methods in the philosophy of science (1954). See: http://suppes-corpus.stanford.edu/browse.html?c=mpm&d=1950
  49. 49.
    Suppes, P.: Introduction to Logic. Van Nostrand, New York (1957)zbMATHGoogle Scholar
  50. 50.
    Wadsworth, B.: Piaget’s Theory of Cognitive Development: An Introduction for Students of Psychology and Education. David McKay & Company, NewYork (1971)Google Scholar
  51. 51.
    Wadsworth, B.: Piaget for the Classroom Teacher. Longman, New York (1978)Google Scholar
  52. 52.
    Wittgenstein, L.: Tractatus logico-philosophicus. Routledge & Kegan Paul, London (1922)zbMATHGoogle Scholar
  53. 53.
    Wittgenstein, L.: Philosophical Investigations. Blackwell Publishing, Oxford (1953)Google Scholar
  54. 54.
    Zadeh, L.A.: Autobiographical note, undated type-written manuscript. after 1978Google Scholar
  55. 55.
    Zadeh, L.A.: Fuzzy Languages and their relation to human and machine intelligence. In: Marois, M, (ed.) Man and Computer. Proceedings of the First International Conference on Man and Computer, Bordeaux, June 22–26 1970. Basel: Karger, S., 1972, pp. 130–165Google Scholar
  56. 56.
    Zadeh, L.A.: From circuit theory to systems theory. Proc. IRE 50, 856–865 (1962)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Zadeh, L.A.: My life and work—a retrospective view. Appl. Comput. Math. 10(1), 4–9 (2011)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Geschichte der Medizin, Naturwissenschaft und TechnikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations