Advertisement

Applying Fuzzy Mathematics to Empirical Work in Political Science

  • John N. MordesonEmail author
  • Terry D. Clark
  • Mark J. Wierman
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 325)

Abstract

This paper discusses the effort that scholars have been engaged in to develop the necessary theoretical basis for political scientists to apply fuzzy logic to empirical analysis in social choice. This paper discusses the many successes scholars have had in this endeavor. It also provides direction for future work in answering questions that have yet to be resolved adequately.

Keywords

Social Choice Choice Function Vote Rule Aggregation Rule Fuzzy Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdelaziz, F.B., Figueira, J.R., Meddeb, O.: On the manipulability of the fuzzy social choice functions. Fuzzy Sets Syst. 159(2), 177–184 (2008). Theme: Games and DecisionGoogle Scholar
  2. 2.
    Arfi, B.: Fuzzy decision making in politics: a linguistic fuzzy-set approach (LFSA). Polit. Anal. 13(1), 23–56 (2005)Google Scholar
  3. 3.
    Arrow, K.: Social Choice and Individual Values. Wiley, New York (1951)zbMATHGoogle Scholar
  4. 4.
    Austen-Smith, D., Banks, J.S.: Positive Political Theory I: Collective Preference. University of Michigan Press, Ann Arbor (1999)Google Scholar
  5. 5.
    Banerjee, A.: Fuzzy preferences and arrow-type problems. Soc. Choice Welf. 11, 121–130 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Banerjee, A.: Fuzzy choice functions, revealed preference and rationality. Fuzzy Sets Syst. 70(1), 31–43 (1995)CrossRefzbMATHGoogle Scholar
  7. 7.
    Barberá,S.: Strategy-proof social choice, pp. 619–653 (2010)Google Scholar
  8. 8.
    Barrett, C.R., Pattanaik, P.K., Salles, M.: Rationality and aggregation of preferences in an ordinally fuzzy framework. Fuzzy Sets Syst. 49, 9–13 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bezdek, J.C., Spillman, B., Spillman, R.: A fuzzy relation space for group decision theory. Fuzzy Sets Syst. 1, 255–268 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Black, D.: The Theory of Committees and Elections. Cambridge University Press, Cambridge (1958)zbMATHGoogle Scholar
  12. 12.
    Blin, J.M.: Fuzzy relations in group decision theory. J. Cybern. 4(2), 17–22 (1974)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Casey, P.C., Wierman, M.J., Gibilisco, M.B., Mordeson, J.N., Clark, T.D.: Assessing policy stability in Iraq: a fuzzy approach to modeling preferences. Public Choice 151, 409–423 (2012)CrossRefGoogle Scholar
  14. 14.
    Chaudhari, S.R., Desai, S.S.: On the full rationality of fuzzy choice functions on base domain. New Math. Nat. Comput. 08(02), 183–193 (2012)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ching, S.: Strategy-proofness and “median voters”. Int. J. Game Theory 26(4), 473–490 (1997). http://dx.doi.org/10.1007/BF01813886
  16. 16.
    Cioffi-Revilla, C.A.: Fuzzy sets and models of international relations. Am. J. Polit. Sci. 25(1), 129–159 (1981)CrossRefGoogle Scholar
  17. 17.
    Clark, T.D., Larson, J.M., Mordeson, J.N., Potter, J.D., Wierman, M.J.: Applying Fuzzy Mathematics to Formal Models in Comparative Politics. Springer, Berlin (2008)zbMATHGoogle Scholar
  18. 18.
    Clark, T.D., Larson, J.M., Mordeson, J.N., Wierman, M.J.: Extension of the portfolio allocation model to surplus majority governments: a fuzzy approach. Public Choice 134(3–4), 179–199 (2008)CrossRefGoogle Scholar
  19. 19.
    Clark, T.D., Mordeson, J.N., Neilson, L., Wierman, M.J.: Fuzzy geometry: applied to comparative politics. In: Wang, P.P., Mordeson, J.N., Wierman, M.J. (eds.) Critical Review. The Society for Mathematics of Uncertainty, ser. 2, vol. 2, pp. 1–12. Society for the Mathematics of Uncertainty (2008)Google Scholar
  20. 20.
    Dasgupta, M., Deb, R.: Transitivity and fuzzy preferences. Soc. Choice Welf. 13(3), 305–318 (1996). http://dx.doi.org/10.1007/BF00179234
  21. 21.
    Desai, S.S.: On quasi-transitive rationality of fuzzy choice functions. New Mathematics and Natural Computation, pp. 0–0, to appearGoogle Scholar
  22. 22.
    Dimitrov, D.: Intuitionistic fuzzy preferences: a factorization. Adv. Stud. Contemp. Math. 5(1), 93–104 (2002)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Dimitrov, D.: The Paretian liberal with intuitionistic fuzzy preferences: a result, Social Choice and Welfare 23(1), 149–156 (2004). http://dx.doi.org/10.1007/s00355-003-0247-5
  24. 24.
    Dubois, D., Prade, H.: Towards fuzzy differential calculus part 1: integration of fuzzy mappings. Fuzzy Sets Syst. 8(1), 1–17 (1982)CrossRefzbMATHGoogle Scholar
  25. 25.
    Dubois, D., Prade, H.: Towards fuzzy differential calculus part 2: integration on fuzzy intervals. Fuzzy Sets Syst. 8(2), 105–116 (1982)CrossRefzbMATHGoogle Scholar
  26. 26.
    Dubois, D., Prade, H.: Towards fuzzy differential calculus part 3: differentiation. Fuzzy Sets Syst. 8(3), 225–233 (1982). http://dx.doi.org/10.1016/S0165-0114(82)80001-8
  27. 27.
    Duddy, C., Perote-Peña, J., Piggins, A.: Arrows theorem and max-star transitivity. Soc. Choice Welf. 36(1), 25–34 (2011). http://dx.doi.org/10.1007/s00355-010-0461-x
  28. 28.
    Dutta, B.: Fuzzy preferences and social choice. Math. Soc. Sci. 13(3), 215–229 (1987)CrossRefzbMATHGoogle Scholar
  29. 29.
    Fono, L.A., Nana, G.N., Salles, M., Gwet, H.: A binary intuitionistic fuzzy relation: some new results, a general factorization, and two properties of strict components. Int. J. Math. Math. Sci. (2009)Google Scholar
  30. 30.
    Fono, L.A., Andjiga, N.G.: Fuzzy strict preference and social choice. Fuzzy Sets Syst. 155, 372–389 (2005). http://dx.doi.org/10.1016/j.fss.2005.05.001
  31. 31.
    Fono, L.A., Donfack-Kommogne, V., Andjiga, N.G.: Fuzzy arrow-type results without the pareto principle based on fuzzy pre-orders. Fuzzy Sets Syst. 160(18), 2658–2672 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    García-Lapresta, J.L., Llamazares, B.: Aggregation of fuzzy preferences: some rules of the mean. Soc. Choice Welf. 17(4), 673–690 (2000). http://dx.doi.org/10.1007/s003550000048
  33. 33.
    Georgescu, I.: Degree of dominance and congruence axioms for fuzzy choice functions. Fuzzy Sets Syst. 155(3), 390–407 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Georgescu, I.: Rational choice and revealed preference: a fuzzy approach. Ph.D. dissertation, Abo Akademi University Turku Centre for Computer Science, Lemminkainengatan 14B Fin-20520 Abo, Finland (2005)Google Scholar
  35. 35.
    Georgescu, I.: Fuzzy Choice Functions—A Revealed Preference Approach. Studies in Fuzziness and Soft Computing, 214th edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  36. 36.
    Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41(4), 587–601 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Gibilisco, M.B., Mordeson, J.N., Clark, T.D.: Fuzzy Black’s median voter theorem: examining the structure of fuzzy rules and strict preference. New Math. Nat. Comput. (NMNC) 8(02), 195–217 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Herr, J.E., Mordeson, J.N.: Factorization of fuzzy preference relations. Adv. Fuzzy Sets Syst. 9, 17–35 (2011)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Kacprzyk, J., Fedrizzi, M.: A soft measure of consensus in the setting of partial (fuzzy) preferences. Eur. J. Oper. Res. 34(3), 316–325 (1988)Google Scholar
  40. 40.
    Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst. 49, 21–31 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Kandel, A.: Fuzzy Tech. Pattern Recognit. Wiley, New York (1982)Google Scholar
  42. 42.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic; Theory and Applications. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  43. 43.
    Koenig-Archibugi, M.: Explaining government preferences for institutional change in EU foreign and security policy. Int. Organ. 58(01), 137–174 (2004)CrossRefGoogle Scholar
  44. 44.
    Llamazares, B.: Factorization of fuzzy preferences. Soc. Choice Welf. 24(3), 475–496 (2005). http://dx.doi.org/10.1007/s00355-003-0311-1
  45. 45.
    McKelvey, R.D.: Intransitivities in multidimensional voting models. J. Econ. Theory 12, 472–482 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    McKelvey, R.D.: Coverning, dominance and institution-free properties of social choice. Am. J. Polit. Sci. 30, 283–314 (1986)CrossRefGoogle Scholar
  47. 47.
    Mordeson, J.N., Bhutani, K.R., Clark, T.D.: The rationality of fuzzy choice functions. New Math. Nat. Comput. (NMNC) 4(03), 309–327 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Mordeson, J.N., Clark, T.D.: Fuzzy Arrow’s theorem. New Math. Nat. Comput. 05(02), 371–383 (2009). http://www.worldscientific.com/doi/abs/10.1142/S1793005709001362
  49. 49.
    Mordeson, J.N., Clark, T.D.: The core in fuzzy spatial models. New Math. Nat. Comput. (NMNC) 06(01), 17–29 (2010)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Mordeson, J.N., Clark, T.D.: The existence of a majority rule maximal set in arbitrary n-dimensional spatial models. New Math. Nat. Comput. 06(03), 261–274 (2010)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Mordeson, J.N., Clark, T.D., Karnik, A., Moore, J., Wierman, M.J.: Determining the causes of democratic consolidation: a consideration of several fuzzy methods. New Math. Nat. Comput. (NMNC) 05(02), 353–369 (2009)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Mordeson, J.N., Clark, T.D., Miller, N.R., Casey, P.C., Gibilisco, M.B.: The uncovered set and indifference in spatial models: a fuzzy set approach. Fuzzy Sets Syst. 168, 89–101 (2011). http://dx.doi.org/10.1016/j.fss.2010.10.016
  53. 53.
    Mordeson, J.N., Clark, T.D., Wierman, M.J., Larson, J.M., Grieser, A.D.: An inductive approach to determining causality in comparative politics: a fuzzy set alternative. New Math. Nat. Comput. 3(2), 191–207 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Mordeson, J.N., Gibilisco, M.B., Clark, T.D.: Independence of irrelevant alternatives and fuzzy Arrow’s theorem. New Math. Nat. Comput. 08(02), 219–237 (2012). http://www.worldscientific.com/doi/abs/10.1142/S1793005712400121
  55. 55.
    Mordeson, J.N., Nielsen, L., Clark, T.D.: Single peaked fuzzy preferences in one-dimensional models: does Black’s median voter theorem hold? New Math. Nat. Comput. 06(01), 1–16 (2010)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4), 437–455 (1980). http://dx.doi.org/10.1007/BF00128122
  57. 57.
    Nana, G.N., Fono, L.A.: Arrow-type results under intuitionistic fuzzy preferences. New Math. Nat. Comput. (NMNC) 09(01), 97–123 (2013)CrossRefMathSciNetGoogle Scholar
  58. 58.
    Nurmi, H.: Approaches to collective decision making with fuzzy preference relations. Fuzzy Sets Syst. 6, 249–259 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Nurmi, H.: A fuzzy solution to a majority voting game. Fuzzy Sets Syst. 5, 187–198 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Nurmi, H., Kacprzyk, J.: On fuzzy tournaments and their solution concepts in group decision making. Eur. J. Oper. Res. 51(2), 223–232 (1991)CrossRefzbMATHGoogle Scholar
  61. 61.
    Orlovsky, S.: Decision-making with a fuzzy preference relation. Fuzzy Sets Syst. 1, 155–167 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    Penn, E.M., Patty, J.W., Gailmard, S.: Manipulation and singlepeakedness: a general result. Am. J. Polit. Sci. 436–439 (2011)Google Scholar
  63. 63.
    Pennings, P.: Beyond dichotomous explanations: explaining constitutional control of the executive with fuzzy-sets. Eur. J. Polit. Res. 42(4), 541–568 (2003)CrossRefGoogle Scholar
  64. 64.
    Perote-Peña, J., Piggins, A.: Strategy-proof fuzzy aggregation rules. J. Math. Econ. 43(5), 564–580 (2007)CrossRefzbMATHGoogle Scholar
  65. 65.
    Ragin, C.C.: Fuzzy-Set Soc. Sci. University of Chicago Press, Chicago (2000)Google Scholar
  66. 66.
    Ragin, C.C.: The Comparative Method: Moving Beyond Qualitative and Quantitative Strategies. University of California Press, Berkeley (1987)Google Scholar
  67. 67.
    Richardson, G.: The structure of fuzzy preferences: social choice implications. Soc. Choice Welf. 15, (1998)Google Scholar
  68. 68.
    Sanjian, G.S.: Fuzzy set theory and US arms transfers: modeling the decision-making process. Am. J. Polit. Sci. 32(4), 1018–1046 (1988)CrossRefGoogle Scholar
  69. 69.
    Sanjian, G.S.: Great power arms transfers: modeling the decision-making processes of hegemonic, industrial, and restrictive exporters. Int. Stud. Q. 35(2), 173–193 (1991)CrossRefGoogle Scholar
  70. 70.
    Sanjian, G.S.: A fuzzy set model of NATO decision-making: the case of short range nuclear forces in Europe. J. Peace Res. 29(3), 271–285 (1992)CrossRefGoogle Scholar
  71. 71.
    Sanjian, G.S.: Cold war imperatives and quarrelsome clients: modeling US and USSR arms transfers to India and Pakistan. J. Confl. Res. 42(1), 97–127 (1998)CrossRefGoogle Scholar
  72. 72.
    Sanjian, G.S.: Promoting stability or instability? arms transfers and regional rivalries, 1950–1991. Int. Stud. Q. 43(4), 641–670 (1999)CrossRefGoogle Scholar
  73. 73.
    Sanjian, G.S.: Arms and arguments: modeling the effects of weapons transfers on subsystem relationships. Polit. Res. Q. 54(2), 285–309 (2001)CrossRefGoogle Scholar
  74. 74.
    Satterthwaite, M.A.: Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10(2), 187–217 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  75. 75.
    Seitz, S.T.: Apollo’s oracle: strategizing for peace. Synthese 100(3), 461–495 (1994)CrossRefMathSciNetGoogle Scholar
  76. 76.
    Smithson, M., Verkuilen, J.: Fuzzy Set Theory: Applications in the Social Sciences. Sage Publications, Thousand Oaks (2006)Google Scholar
  77. 77.
    Sprumont, Y.: The division problem with single-peaked preferences: a characterization of the uniform allocation rule. Econometrica 59(2), 509–519 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  78. 78.
    Taber, C.S.: POLI: an expert system model of US foreign policy belief systems. Am. Polit. Sci. Rev. 86(4), 888–904 (1992)CrossRefGoogle Scholar
  79. 79.
    Verkuilen, J.: Methodological Problems in Comparative and Cross-national Analysis: Applications of Fuzzy Set Theory. Ph.D. dissertation, University of Illinois at Urbana-Champaign (2002)Google Scholar
  80. 80.
    Verkuilen, J.: Assigning membership in a fuzzy set analysis. Soc. Meth. Res. 33(4), 462–496 (2005)CrossRefMathSciNetGoogle Scholar
  81. 81.
    Wierman, M.J., Mordeson, J.N., Larson, J.M., Clark, T.D.: Fuzzy subsethood, fuzzy implication, and causality. In: Proceedings JCIS (2007)Google Scholar
  82. 82.
    Wierman, M.J., Tastle, W.J.: Measurement theory and subsethood. In: NAFIPS 2010, Toronto, CA (2010)Google Scholar
  83. 83.
    Wu, C., Wang, X., Hao, Y.: A further study on rationality conditions of fuzzy choice functions. Fuzzy Sets Syst. 176(1), 1–19 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  84. 84.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • John N. Mordeson
    • 1
    Email author
  • Terry D. Clark
    • 2
  • Mark J. Wierman
    • 3
  1. 1.Department of MathematicsCreighton UniversityOmahaUSA
  2. 2.Department of Political ScienceCreighton UniversityOmahaUSA
  3. 3.Department of Journalism, Media, and ComputersCreighton UniversityOmahaUSA

Personalised recommendations