Skip to main content

Fully Nonparametric Short Term Forecasting Electricity Consumption

  • Conference paper
Modeling and Stochastic Learning for Forecasting in High Dimensions

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 217))

Abstract

Electricity Transmission System Operators (TSO) are responsible for operating, maintaining and developing the high and extra high voltage network. They guarantee the reliability and proper operation of the power network. Anticipating electricity demand helps to guarantee the balance between generation and consumption at all times, and directly influences the reliability of the power system. In this paper, we focus on predicting short term electricity consumption in France. Several competitors such as iterative bias reduction, functional nonparametric model or non-linear additive autoregressive approach are compared to the actual SARIMA method. Our results show that iterative bias reduction approach outperforms all competitors both on Mean Absolute Percentage Error and on the percentage of forecast errors higher than 2,000 MW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.

    Google Scholar 

  2. Aneiros, G., Vilar, J. M., Cao, R., & Muñoz San Roque, A. (2013) Functional prediction for the residual demand in electricity spot markets. IEEE Transactions on Power Systems, 28(4), 4201–4208.

    Article  Google Scholar 

  3. Antoniadis, A., Paparoditis, E., & Sapatinas, T. (2008). Bandwidth selection for functional time series prediction. Statistics and Probability Letters, 79, 733–740.

    Article  MathSciNet  Google Scholar 

  4. Chakhchoukh, Y. (2010). A new robust estimation method for ARMA models. IEEE Transactions on Signal Processing, 58(7), 3512–3522.

    Article  MathSciNet  Google Scholar 

  5. Cornillon, P. A., Hengartner, N., & Matzner-Løber, E. (2014, to appear). Recursive bias estimation for multivariate regression. ESAIM/probability and statistics, 18, 483–502.

    Google Scholar 

  6. Cornillon, P. A., Hengartner, N., Jégou, N., & Matzner-Løber, E. (2013). Iterative bias reduction: A comparative study. Statistics and Computing, 23, 777–791.

    Article  MathSciNet  Google Scholar 

  7. Craven, P., & Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31, 377–403.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cugliari, J. (2011). Prévision non-paramétrique de processus à valeurs fonctionnelles. Application à la prévision de la consommation d’électricité. Phd thesis, University Paris Sud 11.

    Google Scholar 

  9. Fan, S., & Hyndamn, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE transactions on power systems, 27(1), 134–141.

    Article  Google Scholar 

  10. Goude, Y. (2008). Mélange de prédicteurs et application à la prévision de la consommation électrique. Phd thesis, University Paris Sud 11.

    Google Scholar 

  11. Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  12. Hengartner, N., Wegkamp, M., & Matzner-Løber, E. (2002). Bandwidth selection for local linear regression smoothers. Journal of the Royal Statistical Society: Series B, 64, 1–14.

    Article  Google Scholar 

  13. Hurvich, C., Simonoff, G., & Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regression using and improved Akaike information criterion. Journal of the Royal Statistical Society: Series B, 60, 271–294.

    Article  MATH  MathSciNet  Google Scholar 

  14. Lefieux, V. (2007). Modèles semi-paramétriques appliqués à la prévision des séries temporelles: cas de la consommation d’électricité. Phd thesis, Rennes.

    Google Scholar 

  15. Li, K. C. (1987). Asymptotic optimality for C p , C L , cross-validation and generalized cross-validation: Discrete index set. The Annals of Statistics, 15, 958–975.

    Article  MATH  MathSciNet  Google Scholar 

  16. Martin, M. M. (1999). Filtrage de Kalman d’une série temporelle saisonnière. Application à la prévision de consommation d’électricité. Revue de Statistique Appliquée, 47(4), 69–86.

    Google Scholar 

  17. Meslier, F. (1976). Contribution à l’analyse des séries chronologiques et application à la mise au point de modèles de prévision à court terme relatifs à la demande journalière relevée à Paris Monsouris. Phd thesis, University Paris Sud 9.

    Google Scholar 

  18. Pierrot, A., & Goude, Y. (2011). Short-term electricity load forecasting with generalized additive models. In Proceedings of ISAP power, Hersonissos, Greece.

    Google Scholar 

  19. Poggi, J. M. (1994). Prévision non-paramétrique de la consommation électrique. Revue de Statistique Appliquée, 42(4), 83–98.

    Google Scholar 

  20. Reiss, P., & Ogden, R. (2009). Smoothing parameter selection for a class of semiparametric linear models. Journal of the Royal Statistical Society: Series B, 71, 505–523.

    Article  MATH  MathSciNet  Google Scholar 

  21. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  MATH  MathSciNet  Google Scholar 

  22. Taylor, J. W., & McSharry, P. E. (2007). A new robust estimation method for ARMA models. IEEE Transactions on Power Systems, 22(4), 2213–2219.

    Article  Google Scholar 

  23. Vilar, J. M., Cao, R., & Aneiros, G. (2012). Forecasting next-day electricity demand and price using nonparametric functional methods. Electrical Power and Energy Systems, 39, 48–55.

    Article  Google Scholar 

  24. Wood, S. N. (2006). Generalized additive models: An introduction with R. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the two anonymous referees for their valuable comments which helped in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-André Cornillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cornillon, PA., Hengartner, N., Lefieux, V., Matzner-Løber, E. (2015). Fully Nonparametric Short Term Forecasting Electricity Consumption. In: Antoniadis, A., Poggi, JM., Brossat, X. (eds) Modeling and Stochastic Learning for Forecasting in High Dimensions. Lecture Notes in Statistics(), vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-18732-7_5

Download citation

Publish with us

Policies and ethics