Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9082))

  • 1843 Accesses

Abstract

The aim of this paper is to study an optimal opening in the sense of minimize the relationship perimeter over area. We analyze theoretical properties of this opening by means of classical results from variational calculus. Firstly, we explore the optimal radius as attribute in morphological attribute filtering for grey scale images. Secondly, an application of this optimal opening that yields a decomposition into meaningful parts in the case of binary image is explored. We provide different examples of 2D, 3D images and mesh-points datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Najman, L., Talbot, H.: Mathematical morphology: from theory to applications p–2010. ISTE-Wiley (2010)

    Google Scholar 

  2. Angulo, J., Velasco-Forero, S.: Structurally adaptive mathematical morphology based on nonlinear scale-space decompositions. Image Analysis & Stereology 30(2), 111–122 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ćurić, V., Landström, A., Thurley, M.J., Hendriks, C.L.L.: Adaptive mathematical morphology–a survey of the field. Pattern Recognition Letters 47, 18–28 (2014)

    Article  Google Scholar 

  4. Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: Proceedings of the Conference on Mathematical Morphology and its Applications to Signal Processing, pp. 22–27 (May 1993)

    Google Scholar 

  5. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding 64(3), 377–389 (1996)

    Article  Google Scholar 

  6. Talbot, H., Appleton, B.: Efficient complete and incomplete path openings and closings. Image Vision Comput. 25(4), 416–425 (2007)

    Article  Google Scholar 

  7. Serna, A., Marcotegui, B.: Attribute controlled reconstruction and adaptive mathematical morphology. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 207–218. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Morard, V., Decencière, E., Dokládal, P.: Efficient geodesic attribute thinnings based on the barycentric diameter. Journal of Mathematical Imaging and Vision 46(1), 128–142 (2013)

    Article  MathSciNet  Google Scholar 

  9. Maggi, F.: Set of Finite Perimeter and Geometric Variational Problems. Cambridge University Press (2012)

    Google Scholar 

  10. Mehtre, B.M., Kankanhalli, M.S., Lee, W.F.: Shape measures for content based image retrieval: a comparison. Information Processing & Management 33(3), 319–337 (1997)

    Article  Google Scholar 

  11. Cerri, A., Biasotti, S., Abdelrahman, M., Angulo, J., Berger, K., Chevallier, L., El-Melegy, M., Farag, A., Lefebvre, F., Andrea, Giachetti, et al.: Shrec’13 track: retrieval on textured 3d models. In: Proceedings of the Sixth Eurographics Workshop on 3D Object Retrieval, pp. 73–80. Eurographics Association (2013)

    Google Scholar 

  12. Velasco-Forero, S., Angulo, J.: Statistical shape modeling using morphological representations. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3537–3540. IEEE (2010)

    Google Scholar 

  13. Gueguen, L.: Classifying compound structures in satellite images: A compressed representation for fast queries. Transactions on Geoscience and Remote Sensing, 1–16 (2014)

    Google Scholar 

  14. Younes, L.: Spaces and manifolds of shapes in computer vision: An overview. Image and Vision Computing 30(6), 389–397 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225(1), 103–118 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Alter, F., Caselles, V.: Uniqueness of the cheeger set of a convex body. Nonlinear Analysis 70(1), 32–44 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stredulinsky, E., Ziemer, W.: Area minimizing sets subject to a volume constraint in a convex set. The Journal of Geometric Analysis 7(4), 653–677 (1997), http://dx.doi.org/10.1007/BF02921639

    Article  MATH  MathSciNet  Google Scholar 

  18. Leonardi, G.P., Pratelli, A.: On the cheeger sets in strips and non-convex domains. arXiv preprint arXiv:1409.1376 (2014)

    Google Scholar 

  19. Caselles, V., Alter, A.C.F.: Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces and Free Boundaries 7 (2005)

    Google Scholar 

  20. Caselles, V., Chambolle, A., Novaga, M.: Some remarks on uniqueness and regularity of cheeger sets. Rend. Semin. Math. Univ. Padova 123, 191–201 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Blum, H.: A transformation for extracting new descriptors of shape. In: Proceedings of a Symposium on Models for the Perception of Speech and Visual Forms. MIT, Boston (November 1967)

    Google Scholar 

  22. Calabi, L.: A study of the skeleton of plane figures. Parke Mathematical Laboratories (1965)

    Google Scholar 

  23. Durand, G.: Théprie des ensembles. points ordinaires et point singuliers des enveloppes de sphères. Comptes-rendus de l’Acad’emie de Sciences 190, 571–573 (1930)

    MATH  Google Scholar 

  24. Bouligand, G.: Introduction à la gémétrie infinitésimale directe. Vuibert (1932)

    Google Scholar 

  25. Malandain, G., Fernández-Vidal, S.: Euclidean skeletons. Image and Vision Computing 16(5), 317–327 (1998)

    Article  Google Scholar 

  26. Lantuejoul, C.: La squelettisation et son application aux mesures topologiques des mosaiques polycristallines. Ph.D. dissertation, Ecole des Mines de Paris (1978)

    Google Scholar 

  27. Lantuejoul, C.: Skeletonization in quantitative metallography. Issues of Digital Image Processing 34(107-135), 109 (1980)

    Google Scholar 

  28. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Transactions on Image Processing 4(8), 1153–1160 (1995)

    Article  Google Scholar 

  29. Carlinet, E., Géraud, T.: A comparison of many max-tree computation algorithms. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 73–85. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  30. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18(1), 65–96 (1984)

    Article  Google Scholar 

  31. Xu, J.: Morphological decomposition of 2-d binary shapes into convex polygons: A heuristic algorithm. IEEE Transactions on Image Processing 10(1), 61–71 (2001)

    Article  MATH  Google Scholar 

  32. Yu, L., Wang, R.: Shape representation based on mathematical morphology. Pattern Recognition Letters 26(9), 1354–1362 (2005)

    Article  Google Scholar 

  33. Kim, D.H., Yun, I.D., Lee, S.U.: A new shape decomposition scheme for graph-based representation. Pattern Recognition 38(5), 673–689 (2005)

    Article  Google Scholar 

  34. Liu, G., Xi, Z., Lien, J.-M.: Dual-space decomposition of 2d complex shapes. In: 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH. IEEE (June 2014)

    Google Scholar 

  35. Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: Applications using tree-based image representations. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 485–488. IEEE (2012)

    Google Scholar 

  36. Jeulin, D.: Random structures in physics. In: Space, Structure and Randomness, Contributions in Honor of Georges Matheron in the Fields of Geostatistics, Random Sets, and Mathematical Morphology. Lecture Notes in Statistics, vol. 183, pp. 183–222. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Velasco-Forero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Velasco-Forero, S. (2015). Inner-Cheeger Opening and Applications. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics