Skip to main content

Automated Digital Hair Removal by Threshold Decomposition and Morphological Analysis

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2015)

Abstract

We propose a method for digital hair removal from dermoscopic images, based on a threshold-set model. For every threshold, we adapt a recent gap-detection algorithm to find hairs, and merge results in a single mask image. We find hairs in this mask by combining morphological filters and medial descriptors. We derive robust parameter values for our method from over 300 skin images. We detail a GPU implementation of our method and show how it compares favorably with five existing hair removal methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbas, Q., Fondon, I., Rashid, M.: Unsupervised skin lesions border detection via two-dimensional image analysis. Comp. Meth. Prog. Biom. 104, 1–15 (2011)

    Article  Google Scholar 

  2. Abbas, Q., Celebi, M.E., García, I.F.: Hair removal methods: A comparative study for dermoscopy images. Biomed Signal Proc. Control 6(4), 395–404 (2011)

    Article  Google Scholar 

  3. Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  4. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. ACM SIGGRAPH, pp. 417–424 (2000)

    Google Scholar 

  5. Bornemann, F., März, T.: Fast image inpainting based on coherence transport. J. Math. Imaging Vis. 28, 259–278 (2007)

    Article  Google Scholar 

  6. Cao, T., Tang, K., Mohamed, A., Tan, T.: Parallel banding algorithm to compute exact distance transform with the GPU. In: Proc. ACM I3D, pp. 83–90 (2010)

    Google Scholar 

  7. Christensen, J., Soerensen, M., Linghui, Z., Chen, S., Jensen, M.: Pre-diagnostic digital imaging prediction model to discriminate between malignant melanoma and benign pigmented skin lesion. Skin Res. Technol. 16 (2010)

    Google Scholar 

  8. Cokelaer, F., Talbot, H., Chanussot, J.: Efficient robust d-dimensional path operators. IEEE J. Selected Topics in Signal Processing 6(7), 830–839 (2012)

    Article  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  10. Couprie, M., Bezerra, F.N., Bertrand, G.: Topological operators for grayscale image processing. J. Electronic Imag. 10(4), 1003–1015 (2001)

    Article  Google Scholar 

  11. Fiorese, M., Peserico, E., Silletti, A.: VirtualShave: automated hair removal from digital dermatoscopic images. In: Proc. IEEE EMBS, pp. 5145–5148 (2011)

    Google Scholar 

  12. Huang, A., Kwan, S., Chang, W., Liu, M., Chi, M., Chen, G.: A robust hair segmentation and removal approach for clinical images of skin lesions. In: Proc. EMBS, pp. 3315–3318 (2013)

    Google Scholar 

  13. Iyatomi, H., Oka, H., Celebi, G., Hashimoto, M., Hagiwara, M., Tanaka, M., Ogawa, K.: An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comp. Med. Imag. Graph. 32(7), 566–579 (2008)

    Article  Google Scholar 

  14. Kiani, K., Sharafat, A.: E-shaver: An improved dullrazor for digitally removing dark and light-colored hairs in dermoscopic images. Comput. Biol. Med. 41(3), 139–145 (2011)

    Article  Google Scholar 

  15. Koehoorn, J., Sobiecki, A., Boda, D., Diaconeasa, A., Jalba, A., Telea, A.: Digital hair removal source code (2014), http://www.cs.rug.nl/svcg/Shapes/HairRemoval

  16. Kohonen, T.: Learning vector quantization. In: Self-Organizing Maps, pp. 203–217. Springer (1997)

    Google Scholar 

  17. Lee, H.Y., Lee, H.-K., Kim, T., Park, W.: Towards knowledge-based extraction of roads from 1m-resolution satellite images. In: Proc. SSIAI, pp. 171–178 (2000)

    Google Scholar 

  18. Lee, T., Ng, V., Gallagher, R., Coldman, A., McLean, D.: Dullrazor®: A software approach to hair removal from images. Comput. Biol. Med. 27(6), 533–543 (1997)

    Article  Google Scholar 

  19. Nguyen, N., Lee, T., Atkins, M.: Segmentation of light and dark hair in dermoscopic images: a hybrid approach using a universal kernel. In: Proc. SPIE Med. Imaging, pp. 1–8 (2010)

    Google Scholar 

  20. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE TPAMI 12(7), 629–639 (1990)

    Article  Google Scholar 

  21. Rahimi, A.: Fast connected components on images (2014), http://alumni.media.mit.edu/~rahimi/connected

  22. Saugeon, P., Guillod, J., Thiran, J.: Towards a computer-aided diagnosis system for pigmented skin lesions. Comput. Med. Imag. Grap. 27, 65–78 (2003)

    Article  Google Scholar 

  23. Sobiecki, A., Jalba, A., Boda, D., Diaconeasa, A., Telea, A.: Gap-sensitive segmentation and restoration of digital images. In: Proc. EG GVC, pp. 136–144 (2014)

    Google Scholar 

  24. Telea, A.: An image inpainting technique based on the fast marching method. J. Graphics, GPU, & Game Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  25. Telea, A., van Wijk, J.J.: An augmented fast marching method for computing skeletons and centerlines. In: Proc. VisSym, pp. 251–259 (2002)

    Google Scholar 

  26. Wighton, P., Lee, T., Atkins, M.: Dermascopic hair disocclusion using inpainting. In: Proc. SPIE Med. Imaging, pp. 144–151 (2008)

    Google Scholar 

  27. Xie, F., Qin, S., Jiang, Z., Meng, R.: PDE-based unsupervised repair of hair-occluded information in dermoscopy images of melanoma. Comp. Med. Imag. Graph. 33(4), 275–282 (2009)

    Article  Google Scholar 

  28. Zwan, M.v.d., Meiburg, Y., Telea, A.: A dense medial descriptor for image analysis. In: Proc. VISAPP, pp. 285–293 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Koehoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Koehoorn, J. et al. (2015). Automated Digital Hair Removal by Threshold Decomposition and Morphological Analysis. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics