Advertisement

Guidelines for Establishing Instantiation Validity in IT Artifacts: A Survey of IS Research

  • Roman Lukyanenko
  • Joerg Evermann
  • Jeffrey Parsons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9073)

Abstract

The centrality of information technology (IT) artifacts in Information Systems (IS) research makes it important to understand the relationship between artifacts and the theoretical constructs they purport to instantiate. Despite the central role of the IT artifact in IS research, there are no generally accepted principles for establishing instantiation validity – the extent to which an artifact is a valid instantiation of a theoretical construct or a manifestation of a design principle. We survey relevant knowledge in IS and identify potential guidelines that may address threats to instantiation validity. The guidelines are intended for researchers and reviewers when using IT artifacts in theory testing and when evaluating design science artifacts.

Keywords

Instantiation validity IT artifact Design science research Methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Komiak, S.Y.X., Benbasat, I.: The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Q. 30, 941–960 (2006)Google Scholar
  2. 2.
    Lukyanenko, R., Evermann, J., Parsons, J.: Instantiation validity in IS design research. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 321–328. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Boudreau, M.-C., Gefen, D., Straub, D.W.: Validation in Information Systems Research: A State-of-the-Art Assessment. MIS Q. 25, 1–16 (2001)CrossRefGoogle Scholar
  4. 4.
    Straub, D., Boudreau, M.-C., Gefen, D.: Validation guidelines for IS positivist research. Commun. Assoc. Inf. Syst. 13, 1–63 (2004)Google Scholar
  5. 5.
    Venable, J., Pries-Heje, J., Baskerville, R.: A comprehensive framework for evaluation in design science research. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012. LNCS, vol. 7286, pp. 423–438. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Rossi, M., Sein, M.K.: Design research workshop: a proactive research approach. Present. Deliv. IRIS. 26, 9–12 (2003)Google Scholar
  7. 7.
    Hevner, A., Chatterjee, S.: Design Research in Information Systems: Theory and Practice. Springer (2010)Google Scholar
  8. 8.
    Sonnenberg, C., vom Brocke, J.: Evaluations in the science of the artificial – reconsidering the build-evaluate pattern in design science research. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012. LNCS, vol. 7286, pp. 381–397. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Eriksson, C., Åkesson, M., Kautz, K.-H.: Authentic and Concurrent Evaluation: Refining an Evaluation Approach in Design Science Research. In: PACIS 2011 Proc., pp. 1–13 (2011)Google Scholar
  10. 10.
    Purao, S.: Truth or dare: The ontology question in design science research. J. Database Manag. JDM. 24, 51–66 (2013)CrossRefGoogle Scholar
  11. 11.
    Hevner, A., March, S., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)Google Scholar
  12. 12.
    Walls, J.G., Widmeyer, G.R., Sawy, O.A.E.: Building an information system design theory for vigilant EIS. Inf. Syst. Res. 3, 36–59 (1992)CrossRefGoogle Scholar
  13. 13.
    Gregor, S., Hovorka, D.S.: Causality: The elephant in the room in information systems epistemology. In: 19th Eur. Conf. Inf. Syst. (2011)Google Scholar
  14. 14.
    Chandra, L., Seidel, S., Gregor, S.: Prescriptive Knowledge in IS Research: Conceptualiz-ing Design Principles in Terms of Materiality, Action, and Boundary Conditions. In: Hawaii Int. Conf. Syst. Sci., pp. 4039–4047 (2015)Google Scholar
  15. 15.
    Venkatesh, V., Brown, S.A., Bala, H.: Bridging the qualitative-quantitative divide: Guide-lines for conducting mixed methods research in information systems. MIS Q. 37, 21–54 (2013)Google Scholar
  16. 16.
    Benbasat, I.: Laboratory experiments in information systems studies with a focus on indi-viduals: a critical appraisal. Harvard Business School, Cambridge (1989)Google Scholar
  17. 17.
    Tremblay, M.C., Hevner, A.R., Berndt, D.J.: Focus Groups for Artifact Refinement and Evaluation in Design Research. Commun. Assoc. Inf. Syst. 26, 599–618 (2010)Google Scholar
  18. 18.
    Sein, M., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design research. MIS Q. 35, 37 (2011)Google Scholar
  19. 19.
    Abraham, R., Aier, S., Winter, R.: Fail Early, Fail Often: Towards Coherent Feedback Loops in Design Science Research Evaluation. In: Int. Conf. Inf. Syst., pp. 1–12 (2014)Google Scholar
  20. 20.
    Moore, G.C., Benbasat, I.: Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res. 2, 192–222 (1991)CrossRefGoogle Scholar
  21. 21.
    Jarvenpaa, S.L., Dickson, G.W., DeSanctis, G.: Methodological issues in experimental IS research: experiences and recommendations. MIS Q. 141–156 (1985)Google Scholar
  22. 22.
    Snodgrass, J.G., Vanderwart, M.: A standardized set of 260 pictures: Norms for name agreement. J. Exp. Psychol. 6, 174–215 (1980)Google Scholar
  23. 23.
    Lukyanenko, R., Evermann, J.: A survey of cognitive theories to support data integration. In: AMCIS 2011 Proceedings, pp. 1–15 (2011)Google Scholar
  24. 24.
    Lukyanenko, R., Parsons, J.: Reconciling theories with design choices in design science research. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 165–180. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Arazy, O., Kumar, N., Shapira, B.: A theory-driven design framework for social recom-mender systems. J. Assoc. Inf. Syst. 11, 455–490 (2010)Google Scholar
  26. 26.
    Lukyanenko, R., Parsons, J., Wiersma, Y.: The IQ of the Crowd: Understanding and Im-proving Information Quality in Structured User-generated Content. Inf. Syst. Res. 25, 669–689 (2014)CrossRefGoogle Scholar
  27. 27.
    Burton-Jones, A., Wand, Y., Weber, R.: Guidelines for Empirical Evaluations of Concep-tual Modeling Grammars. J. Assoc. Inf. Syst. 10, 495–532 (2009)Google Scholar
  28. 28.
    Kuechler, W., Vaishnavi, V.: A Framework for Theory Development in Design Science Research: Multiple Perspectives. J. Assoc. Inf. Syst. 13, 395–423 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Roman Lukyanenko
    • 1
  • Joerg Evermann
    • 2
  • Jeffrey Parsons
    • 2
  1. 1.College of BusinessFlorida International UniversityMiamiUSA
  2. 2.Faculty of Business AdministrationMemorial UniversitySt. John’sCanada

Personalised recommendations