Advertisement

Square Code Attack on a Modified Sidelnikov Cryptosystem

  • Ayoub Otmani
  • Hervé Talé Kalachi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9084)

Abstract

This paper presents a cryptanalysis of a modified version of the Sidelnikov cryptosystem which is based on Reed-Muller codes. This modified scheme consists in inserting random columns in the secret generating matrix or parity check matrix. The cryptanalysis relies on the computation of the squares of the public code. The particular nature of Reed-Muller which are defined by means of multivariate binary polynomials, permits to predicate the value of dimension of the square codes and then to fully recover in polynomial time the secret positions of the random columns. Our work shows that the insertion of random columns in the Sidelnikov scheme does not bring any security improvement.

Keywords

Sidelnikov scheme Component-wise product Cryptanalysis Distinguisher 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr. 35(1), 63–79 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chizhov, I.V., Borodin, M.A.: The failure of McEliece PKC based on Reed-Muller codes. IACR Cryptology ePrint Archive, Report 2013/287 (2013), http://eprint.iacr.org/
  4. 4.
    Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014), http://dx.doi.org/10.1007/s10623-014-9967-z CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. In: Proc. IEEE Inf. Theory Workshop, ITW 2011, Paraty, Brasil, pp. 282–286 (October 2011)Google Scholar
  7. 7.
    Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. IEEE Trans. Inf. Theory 59(10), 6830–6844 (2013)CrossRefGoogle Scholar
  8. 8.
    Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural weakness of compact variants of the McEliece cryptosystem. In: Proc. IEEE Int. Symposium Inf. Theory, ISIT 2014, Honolulu, HI, USA, pp. 1717–1721 (July 2014)Google Scholar
  9. 9.
    Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural cryptanalysis of McEliece schemes with compact keys. Des. Codes Cryptogr. (2015), to appear, see also IACR Cryptology ePrint Archive, Report2014/210Google Scholar
  10. 10.
    Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of the 2005 International Workshop on Coding and Cryptography (WCC 2005), Bergen, Norway, pp. 81–91 (March 2005)Google Scholar
  12. 12.
    Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack of a homomorphic encryption scheme relying on Reed-Solomon codes. CoRR abs/1203.6686 (2012)Google Scholar
  13. 13.
    Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack on a variant of McEliece’s cryptosystem based on Reed-Solomon codes. CoRR abs/1204.6459 (2012)Google Scholar
  14. 14.
    Gueye, C.T., Mboup, E.H.M.: Secure cryptographic scheme based on modified Reed Muller codes. International Journal of Security and its Applications 7(3), 55–64 (2013)Google Scholar
  15. 15.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 4th edn. North–Holland, Amsterdam (1986)Google Scholar
  16. 16.
    Márquez-Corbella, I., Pellikaan, R.: Error-correcting pairs for a public-key cryptosystem. preprint (2012) (preprint)Google Scholar
  17. 17.
    McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab (1978), dSN Progress Report 44Google Scholar
  18. 18.
    Minder, L., Shokrollahi, M.A.: Cryptanalysis of the Sidelnikov cryptosystem. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Misoczki, R., Barreto, P.: Compact McEliece keys from Goppa codes. In: Selected Areas in Cryptography, Calgary, Canada (August 13-14, 2009)Google Scholar
  20. 20.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15(2), 159–166 (1986)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs. Ph.D. thesis, Université Paris 6, France (2002)Google Scholar
  22. 22.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Sidelnikov, V.M.: A public-key cryptosytem based on Reed-Muller codes. Discrete Mathematics and Applications 4(3), 191–207 (1994)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sidelnikov, V.M., Shestakov, S.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Mathematics and Applications 1(4), 439–444 (1992)MathSciNetGoogle Scholar
  25. 25.
    Wieschebrink, C.: Two NP-complete problems in coding theory with an application in code based cryptography. In: Proc. IEEE Int. Symposium Inf. Theory, ISIT 2006, pp. 1733–1737 (2006)Google Scholar
  26. 26.
    Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. IACR Cryptology ePrint Archive, Report 2009/452 (2009), http://eprint.iacr.org/2009/452.pdf
  27. 27.
    Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In: Post-Quantum Cryptography 2010, pp. 61–72 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LITISUniversity of RouenMont-Saint-AignanFrance
  2. 2.Department of MathematicsUniversity of Yaounde 1, ERALYaoundéCameroon

Personalised recommendations