Skip to main content

Some Recent Developments in Quantization of Fractal Measures

  • Conference paper
Book cover Fractal Geometry and Stochastics V

Part of the book series: Progress in Probability ((PRPR,volume 70))

Abstract

We give an overview on the quantization problem for fractal measures, including some related results and methods which have been developed in the last decades. Based on the work of Graf and Luschgy, we propose a three-step procedure to estimate the quantization errors. We survey some recent progress, which makes use of this procedure, including the quantization for self-affine measures, Markov-type measures on graph-directed fractals, and product measures on multiscale Moran sets. Several open problems are mentioned.

S. Zhu was supported by China Scholarship Council No. 201308320049

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Bedford, Crinkly curves, Markov partitions and box dimensions in self-similar sets, Ph.D. thesis, University of Warwick (1984)

    Google Scholar 

  2. J.A. Bucklew, G.L. Wise, Multidimensional asymptotic quantization with rth power distortion measures. IEEE Trans. Inform. Theory 28, 239–247 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Cawley, R.D. Mauldin, Multifractal decompositions of Moran fractals. Adv. Math. 92, 196–236 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. K.J. Falconer, Generalized dimensions of measures on almost self-affine sets. Nonlinearity 23, 1047–1069 (2010)

    Article  MathSciNet  Google Scholar 

  5. A. Gersho, Asymptotically optimal block quantization. IEEE Trans. Inform. Theory 25, 373–380 (1979)

    Article  MathSciNet  Google Scholar 

  6. S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, vol. 1730. (Springer, Berlin/New York, 2000)

    Google Scholar 

  7. S. Graf, H. Luschgy, Asymptotics of the quantization error for self-similar probabilities. Real. Anal. Exch. 26, 795–810 (2001)

    MathSciNet  MATH  Google Scholar 

  8. S. Graf, H. Luschgy, Quantization for probabilitiy measures with respect to the geometric mean error. Math. Proc. Camb. Phil. Soc. 136, 687–717 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Graf, H. Luschgy, The point density measure in the quantization of self-similar probabilities. Math. Proc. Camb. Phil. Soc. 138, 513–531 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Graf, H. Luschgy, G. Pagès, The local quantization behavior of absolutely continuous probabilities. Ann. Probab. 40(4), 1795–1828 (2012)

    Article  MathSciNet  Google Scholar 

  11. Y. Gui, W.X. Li, Multiscale self-affine Sierpinski carpets. Nonlinearity 23, 495–512 (2010)

    Article  MathSciNet  Google Scholar 

  12. J.E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747; 7–156 (1981)

    Google Scholar 

  13. M. Kesseböhmer, S. Zhu, Quantization dimension via quantization numbers. Real Anal. Exch. 29(2), 857–866 (2003/2004)

    Google Scholar 

  14. M. Kesseböhmer, S. Zhu, Stability of quantization dimension and quantization for homogeneous Cantor measures. Math. Nachr. 280(8), 866–881 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Kesseböhmer, S. Zhu, On the quantization for self-affine measures on Bedford-McMullen carpets. arXiv:1312.3289 (2013)

    Google Scholar 

  16. M. Kesseböhmer, S. Zhu, The quantization for Markov-type measures on a class of ratio-specified graph directed fractals. preprint arXiv:1406.3257 (2014)

    Google Scholar 

  17. J.F. King, The singularity spectrum for general Sierpiński carpets. Adv. Math. 116, 1–11 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. S.P. Lalley, D. Gatzouras, Hausdorff and box dimensions of certain self-affine fractals. Indiana Univ. Math. J. 41, 533–568 (1992)

    Article  MathSciNet  Google Scholar 

  19. L.J. Lindsay, R.D. Mauldin Quantization dimension for conformal iterated function systems. Nonlinearity 15, 189–199 (2002)

    Google Scholar 

  20. R.D. Mauldin, S.C. Williams, Hausdorff dimension Graph-directed constructions. Trans. AMS. Math. 309, 811–829 (1988)

    Article  MathSciNet  Google Scholar 

  21. C. McMullen, The Hausdorff dimension of general Sierpiński carpetes. Nagoya Math. J. 96, 1–9 (1984)

    MathSciNet  Google Scholar 

  22. G. Pagès, A space quantization method for numerical integration. J. Comput. Appl. Math. 89(1), 1–38 (1998)

    Article  MathSciNet  Google Scholar 

  23. G. Pagès, B. Wilbertz, Dual quantization for random walks with application to credit derivatives. J. Comput. Finance 16, 33–60 (2012)

    Google Scholar 

  24. G. Pagès, B. Wilbertz, Optimal Delaunay and Voronoi quantization schemes for pricing American style options, in Numerical Methods in Finance. Springer Proc. Math., Vol. 12. (Springer, Heidelberg, 2012), pp. 171–213

    Google Scholar 

  25. Y. Peres, The self-affine carpetes of McMullen and Bedford have infinite Hausdorff measure. Math. Proc. Camb. Phil. Soc. 116, 513–26 (1994)

    Article  MATH  Google Scholar 

  26. K. Pözelberger, The quantization dimension of distributions. Math. Proc. Camb. Phil. Soc. 131, 507–519 (2001)

    Google Scholar 

  27. M.K. Roychowdhury, Quantization dimension for some Moran measures. Proc. Am. Soc. 138(11), 4045–4057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. M.K. Roychowdhury, Quantization dimension function and Gibbs measure associated with Moran set. J. Math. Anal. Appl. 373(1), 73–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. M.K. Roychowdhury, Quantization dimension and temperature function for recurrent self-similar measures. Chaos Solitons Fractals 44(11), 947–953 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. M.K. Roychowdhury, Quantization dimension estimate of probability measures on hyperbolic recurrent sets. Dyn. Syst. 29(2), 225–238 (2014)

    Article  MathSciNet  Google Scholar 

  31. Z.Y. Wen, Moran sets and Moran classes. Chinese Sci. Bull. 46, 1849–1856 (2001)

    Article  MathSciNet  Google Scholar 

  32. P.L. Zador, Development and evaluation of procedures for quantizing multivariate distributions. Ph.D. thesis, Stanford University (1964)

    Google Scholar 

  33. S. Zhu, The lower quantization coefficient of the F-conformal measure is positive. Nonlinear Anal. 69(2), 448–455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Zhu, Quantization dimension of probability measures supported on Cantor-like sets. J. Math. Anal. Appl. 338(1), 742–750 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Zhu, Quantization dimension for condensation systems. Math. Z. 259(1), 33–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Zhu, Quantization dimension for condensation systems. II. The geometric mean error. J. Math. Anal. Appl. 344(1), 583–591 (2008)

    Article  MATH  Google Scholar 

  37. S. Zhu, The quantization for self-conformal measures with respect to the geometric mean error. Nonlinearity 23(11), 2849–2866 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Zhu, The quantization dimension for self-affine measures on general Sierpiński carpets. Monatsh. Math. 162, 355–374 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Zhu, Asymptotic uniformity of the quantization error of self-similar measures. Math. Z. 267(3–4), 915–929 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Zhu, On the upper and lower quantization coefficient for probability measures on multiscale Moran sets. Chaos, Solitons Fractals 45, 1437–1443 (2012)

    Article  MathSciNet  Google Scholar 

  41. S. Zhu, A note on the quantization for probability measures with respect to the geometric mean error. Monatsh. Math. 167(2), 295–304 (2012)

    Article  Google Scholar 

  42. S. Zhu, Asymptotics of the geometric mean error in the quantization for product measures on Moran sets. J. Math. Anal. Appl. 403(1), 252–261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Zhu, A characterization of the optimal sets for self-similar measures with respect to the geometric mean error. Acta Math. Hungar. 138(3), 201–225 (2013)

    Article  MathSciNet  Google Scholar 

  44. S. Zhu, Convergence order of the geometric mean errors for Markov-type measures. Chaos, Solitons Fractals 71, 14–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kesseböhmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kesseböhmer, M., Zhu, S. (2015). Some Recent Developments in Quantization of Fractal Measures. In: Bandt, C., Falconer, K., Zähle, M. (eds) Fractal Geometry and Stochastics V. Progress in Probability, vol 70. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-18660-3_7

Download citation

Publish with us

Policies and ethics