Skip to main content

Ultralow-Power Pseudospintronic Devices via Exciton Condensation in Coupled Two-Dimensional Material Systems

  • Chapter
Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy

Abstract

“Pseudospintronic” device concepts, novel “beyond-CMOS” device proposals targeted toward revolutionizing the current semiconductor technology based on MOSFETs and CMOS logic, are addressed in detail. These pseudospin devices include the voltage-controlled Bilayer pseudoSpin Field-Effect Transistor (BiSFET) and the current-controlled Bilayer pseudoSpin Junction Transistor (BiSJT). MOSFETs are confronted by the intractable physics of thermionic emission and resulting source-to-drain leakage that limits voltage scaling. As a result, CMOS faces an “energy crisis” much as the one faced by bipolar junction transistor-based logic that led to CMOS. As for many other beyond-CMOS concepts, these pseudospintronic devices are based on a completely different physics of switching, potentially allowing much lower voltage and power operation. These pseudospintronic device concepts employ possible room-temperature interlayer electron–hole exciton condensates between two dielectrically separated layers of two-dimensional (2D) materials for subthermal voltage (sub-k B T/q) switching, specifically from a nearly shorted interlayer conductance state to a highly resistive interlayer conductance state with increasing interlayer voltage. These collective exciton states with their “which-layer” degree of freedom are somewhat analogous to collective spin states in magnets, which is the origin of the “pseudospintronics” moniker. Device performance in the presence of such condensates is the primary focus of this work; the possibility of room-temperature condensates, itself, is addressed by other research still in progress. We begin with a discussion of the underlying physics. Graphene-based pseudospintronic systems then are analyzed using quantum transport simulations incorporating the nonlocal exchange interaction. However, the essential transport physics should be much the same for other 2D material systems, including transition metal dichalcogenides for which the realization of the condensate may be easier. The BiSFET and BiSJT device concepts are presented in detail, and basic logic gate designs are illustrated for each. Compact device models are developed and SPICE-level circuit simulations are performed to demonstrate possible switching energies on the scale of or below a tenth of an attojoule, well below even end-of-the-road-map CMOS. However, like many other beyond-CMOS concepts, these devices remain concepts without solid experimental embodiments. The fabrication concerns of such novel devices are also discussed along with recent experimental progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.J. Davisson, The diffraction of electrons by a crystal of nickel. Bell Syst. Tech. J. 7, 90 (1928)

    Article  Google Scholar 

  2. J. Frenkel, On the transformation of light into heat in solids. I. Phys. Rev. 37, 17 (1931)

    Article  Google Scholar 

  3. J. Frenkel, On the transformation of light into heat in solids. II. Phys. Rev. 37, 1276 (1931)

    Article  Google Scholar 

  4. L.N. Cooper, Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189 (1956)

    Article  Google Scholar 

  5. S.N. Bose, Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178 (1924)

    Article  Google Scholar 

  6. A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 3 (1925)

    Google Scholar 

  7. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Microscopic theory of superconductivity. Phys. Rev. 106, 162 (1957)

    Article  Google Scholar 

  8. D.R. Tilley, J. Tilley, Superfluidity and superconductivity (Institute of Physics Publishing, Bristol, 1990)

    Google Scholar 

  9. P. Kapitza, Viscosity of liquid helium below the lambda-point. Nature 141, 74 (1938)

    Article  Google Scholar 

  10. J.F. Allen, A.D. Misener, Flow phenomena in liquid helium II. Nature 142, 643 (1938)

    Article  Google Scholar 

  11. D.D. Osheroff, R.C. Richardson, D.M. Lee, Evidence for a new phase of solid He3. Phys. Rev. Lett. 28, 885 (1972)

    Article  Google Scholar 

  12. I.O. Kulik, S.I. Shevchenko, Excitonic ‘superfluidity’ in low-dimensional crystals. Solid State Commun. 21, 409 (1977)

    Article  Google Scholar 

  13. J.P. Eisenstein, A.H. MacDonald, Bose-Einstein condensation of excitons in bilayer electron systems. Nature 432, 691 (2004)

    Article  Google Scholar 

  14. H. Min, R. Bistritzer, J.-J. Su, A.H. MacDonald, Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401(R) (2008)

    Article  Google Scholar 

  15. D.S.L. Abergel, M. Rodrigues-Vega, E. Rossi, S. Das Sarma, Interlayer excitonic superfluidity in graphene. Phys. Rev. B 88, 235402 (2013)

    Article  Google Scholar 

  16. Private communication with A.H. MacDonald: Exciton condensation in bilayer MoS2 system

    Google Scholar 

  17. I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet. Phys. Rev. Lett. 84, 5808 (2000)

    Article  Google Scholar 

  18. E. Tutuc, M. Shayegan, D.A. Huse, Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004)

    Article  Google Scholar 

  19. L. Tiemann, W. Dietsche, M. Hauser, K. von Klitzing, Critical tunneling currents in the regime of bilayer excitons. New J. Phys. 10, 045018 (2008)

    Article  Google Scholar 

  20. D. Nandi, A.D.K. Finck, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Exciton condensation and perfect Coulomb drag. Nature 488, 481 (2012)

    Article  Google Scholar 

  21. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac Fermions in graphene. Nature 438, 197 (2005)

    Article  Google Scholar 

  22. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)

    Article  Google Scholar 

  23. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002)

    Article  Google Scholar 

  24. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  25. I. Sodemann, D.A. Pesin, A.H. MacDonald, Interaction-enhanced coherence between two-dimensional Dirac layers. Phys. Rev. B 85, 195136 (2012)

    Article  Google Scholar 

  26. D. Basu, L.F. Register, D. Reddy, A.H. MacDonald, S.K. Banerjee, Tight-binding study of electron-hole pair condensation in graphene bilayers: gate control and system-parameter dependence. Phys. Rev. B 82, 075409 (2010)

    Article  Google Scholar 

  27. G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, D. Xiao, Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2014)

    Article  Google Scholar 

  28. Feng-Cheng Wu, Fei Xue, A.H. MacDonald, Theory of spatially indirect equilibrium exciton condensates. arXiv:1506.01947. Submitted for publication (2015)

    Google Scholar 

  29. X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343 (2014)

    Article  Google Scholar 

  30. S. Shallcross, S. Sharma, E. Kandelaki, O.A. Pankratov, Electronic structure of turbostratic graphene. Phys. Rev. B 81, 165105 (2010)

    Article  Google Scholar 

  31. X. Mou, L.F. Register, S.K. Banerjee, Quantum transport simulation of Bilayer pseudoSpin Field-Effect Transistor (BiSFET) with tight-binding hartree-fock model. IEEE SISPAD 2013, 420, Glasgow, United Kingdom (2013)

    Google Scholar 

  32. X. Mou, D. Basu, L.F. Register, S.K. Banerjee, manuscript in preparation

    Google Scholar 

  33. M. Cheli, G. Fiori, G. Iannaccone, A semianalytical model of bilayer-graphene field-effect transistor. Trans. Electron Devices IEEE 56, 2979 (2009)

    Article  Google Scholar 

  34. S.K. Banerjee, L.F. Register, E. Tutuc, D. Reddy, A.H. MacDonald, Bilayer pseudospin field-effect transistor (BiSFET): a proposed new logic device. Electron. Device Lett. IEEE 30, 158 (2009)

    Article  Google Scholar 

  35. P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics. Nat. Nanotechnol. 2, 605 (2007)

    Article  Google Scholar 

  36. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, A. Yacoby, Observation of electron-hole puddles in graphene using a scan single-electron transistor. Nat. Phys. 4, 144 (2008)

    Article  Google Scholar 

  37. D. Basu, L.F. Regisetr, A.H. MacDonald, S.K. Banerjee, Effect of interlayer bare tunneling on electron-hole coherence in graphene bilayers. Phys. Rev. B 84, 035449 (2011)

    Article  Google Scholar 

  38. S. Datta, Electronic transport in mesoscopic systems. Cambridge studies in semiconductor physics and microelectronic engineering (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  39. E.H. Hwang, S. Das Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008)

    Article  Google Scholar 

  40. J.-J. Su, A.H. MacDonald, How to make a bilayer exciton condensate flow. Nat. Phys. 4, 799 (2008)

    Article  Google Scholar 

  41. K.K. Ng, Complete guide to semiconductor devices (Wiley, New York, 2002), pp. 569–574

    Google Scholar 

  42. Y. Yu, S. Han, X. Chu, S.-I. Chu, Z. Wang, Coherent temporal oscillations of macroscopic quantum states in a Josephson Junction. Science 296, 889 (2002)

    Article  Google Scholar 

  43. X. Mou, L.F. Register, S.K. Banerjee, Quantum transport simulations on the Feasibility of the Bilayer pseudoSpin Field-Effect Transistor (BiSFET). IEDM 2013, 4.7.1–4.7.4, Washington DC, United States (2013)

    Google Scholar 

  44. X. Mou, L.F. Register, S.K. Banerjee, Bilayer pseudospin junction transistor (BiSJT): a new “beyond-CMOS” logic device. Submitted for publication (2015)

    Google Scholar 

  45. X. Mou, L.F. Register, S.K. Banerjee, Quantum transport simulation of exciton condensate transport physics within a bilayer graphene system. Submitted for publication (2015)

    Google Scholar 

  46. X. Mou, L.F. Register, S.K. Banerjee, Interplay among Bilayer PseudoSpin Field-Effect Transistor (BiSFET) performance, BiSFET scale and condensate strength. Accepted by IEEE SISPAD 2014, Yokohama, Japan (2014)

    Google Scholar 

  47. L.F. Register, X. Mou, D. Reddy, W. Jung, I. Sodemann, D. Pesin, A. Hassibi, A.H. MacDonald, S.K. Banerjee, Bilayer pseudo-spin field effect transistor (BiSFET): concepts and critical issues for realization. ECS Trans. 45, 3 (2012)

    Article  Google Scholar 

  48. K. Wu, A. Sachid, F.-L. Yang, C. Hu, Toward 44% switching energy reduction for FinFETs with vacuum gate spacer. IEEE SISPAD 2012, 253, Denver, Colorado (2012)

    Google Scholar 

  49. R.T. Weitz, M.T. Allen, B.E. Feldman, J. Martin, A. Yacoby, Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812 (2010)

    Article  Google Scholar 

  50. P. Jadaun, H.C.P. Movva, L.F. Register, S.K. Banerjee, Theory and synthesis of bilayer graphene intercalated with ICl and IBr for low power device applications. J. Appl. Phys. 114, 063702 (2013)

    Article  Google Scholar 

  51. D. Reddy, L.F. Register, E. Tutuc, S.K. Banerjee, Bilayer pseudospin field-effect transistor: applications to Boolean logic. IEEE Trans. Electron. Devices 57, 755 (2010)

    Article  Google Scholar 

  52. http://www.itrs.net

  53. J.B. Johnson, Thermal agitation of electricity in conductors. Phys. Rev. 32, 97 (1928)

    Article  Google Scholar 

  54. H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110 (1928)

    Article  Google Scholar 

  55. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the South West Academy of Nanoelectronics (SWAN), which in turn is supported by the Semiconductor Research Corporation (SRC) and the National Institute of Standards and Technology (NIST) through the Nanoelectronics Research Initiative (NRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehao Mou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mou, X., Register, L.F., Banerjee, S.K. (2015). Ultralow-Power Pseudospintronic Devices via Exciton Condensation in Coupled Two-Dimensional Material Systems. In: Korkin, A., Goodnick, S., Nemanich, R. (eds) Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18633-7_2

Download citation

Publish with us

Policies and ethics