Advertisement

Abstract

The historic trend in micro/nano-electronics these last 40 years has been to increase both speed and density by scaling down the electronic devices, together with reduced energy dissipation per binary transition. We are facing today dramatic challenges dealing with the limits of energy consumption and heat removal, inducing fundamental tradeoffs for the future ICs. A substantial reduction of the static and dynamic power is strongly needed for the development of future high-performance/ultralow-power terascale integration and autonomous nanosystems.

This chapter of the tutorial book addresses the main trends, challenges, limits, and possible solutions for strongly reducing the energy per binary switching. Several paths are possible, the most promising one being the reduction of static and dynamic energy consumption using conventional logic with a reduction in the stored energy and therefore a decrease of device capacitance C (device integration) and applied bias V, together with a decrease of leakage currents of nanodevices.

The best potential solutions are ultrathin-film SOI (silicon-on-insulator) and multi-gate devices, nanowires, and small-slope switches (tunnel FETs, ferroelectric gate FETs, NEMS) using alternative channel, source/drain, and gate materials. We will present the main challenges to continue More’s law, the novel materials and device architectures, and the possible combination of these boosters, needed for the development of future ultralow-power ICs.

Keywords

Subthreshold Slope Subthreshold Swing Volume Inversion Silicon Layer Thickness Small Leakage Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author would like to thank the SiNANO Institute members and the FP7 Nanosil and Nanofunction European Networks of Excellence Partners.

References

  1. 1.
    D. Kahng, M.M. Atalla, Silicon–silicon dioxide field induced surface devices. IRE Solid-State Device Res. Conf., Carnegie Institute of Technology, Pittsburgh, PA, 1960Google Scholar
  2. 2.
    D. Kahng, A historical perspective on the development of MOS transistors and related devices. IEEE Trans. Electron. Devices ED-23, 655 (1976)CrossRefGoogle Scholar
  3. 3.
    R. Landauer, IBM J. Res. Dev. 5(3), 183–191 (1961)Google Scholar
  4. 4.
    C.H. Benett, IBM J. Res. Dev. 17(6), 525–532 (1973)CrossRefGoogle Scholar
  5. 5.
    G.P. Boechler, J.M. Whitney, C.S. Lent, A.O. Orlov, G.L. Snider, Appl. Phys. Lett. 97, 103502 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Cristoloveanu, F. Balestra, Introduction to SOI technology and transistors, in Physics and operation of Silicon devices and Integrated circuits, ed. by J. Gautier (ISTE-Wiley, London, 2009)Google Scholar
  7. 7.
    F. Balestra (ed.), Nanoscale CMOS: innovative materials, modeling and characterization (ISTE-Wiley, London, 2010)Google Scholar
  8. 8.
    F. Balestra, J. Brini, P. Gentil, Simulation of deep depleted SOI MOSFETs with back potential control, Proc. ESSDERC ’84, Lille, France, 1984, Physica, 129B, 296 (1985)Google Scholar
  9. 9.
    F. Balestra, J. Brini, P. Gentil, Comparison between experiment, analytical models and numerical simulation for threshold voltages of deep depleted SOI MOSFETs, Proc. ESSDERC ‘85, Aachen, Germany (1985), p. 232Google Scholar
  10. 10.
    F. Balestra, Characterisation and simulation of SOI MOS transistors with back potential control, PhD Thesis, Grenoble Institute of Technology, Apr 1985Google Scholar
  11. 11.
    J.P. Colinge, Subthreshold slope of thin-film SOI MOSFETs. IEEE Electron. Devices Lett. EDL-7, 244 (1986)CrossRefGoogle Scholar
  12. 12.
    F. Balestra et al., Analytical modelling of single and double gate thin film SOI MOSFETs, Proc. ESSDERC ‘89, Berlin, Germany, Sept 1989 (Springer, Berlin, 1989), p. 889Google Scholar
  13. 13.
    F. Balestra et al., Analytical models of subthreshold swing and threshold voltage for thin- and ultra-thin-film SOI MOSFETs. IEEE Trans. Electron. Devices ED-37, 2303 (1990)CrossRefGoogle Scholar
  14. 14.
    D.J. Wouters, J.P. Colinge, H.E. Maes, Subthreshold slope in thin-film SOI MOSFETs. IEEE Trans. Electron. Devices ED-37, 2022 (1990)CrossRefGoogle Scholar
  15. 15.
    J.G. Fossum, S. Krishnan, P.C. Yeh, Performance limitations of deep-submicron fully depleted SOI MOSFETs, Proc. IEEE Int. SOI Conf. (1992), p. 132Google Scholar
  16. 16.
    Y. Omura et al., Quantum mechanical transport characteristics in ultimately miniaturized MOSFETs/SIMOX. Electrochem. Soc. Proc. 96–3, 199 (1996)Google Scholar
  17. 17.
    L.T. Su et al., Short-channel effects in deep submicrometer SOI MOSFETs, Proc. IEEE Int. SOI Conf. (1993), p. 112Google Scholar
  18. 18.
    F. Andrieu, O. Weber, J. Mazurier, O. Thomas, J.-P. Noel, C. Fenouillet-Béranger, Low leakage and low variability ultra-thin body and buried oxide (UT2B) SOI Technology for 20 nm low power CMOS and beyond, Proc. Symposium of VLSI Technology (2010)Google Scholar
  19. 19.
    T. Ernst, S. Cristoloveanu, The ground-plane concept for the reduction of short-channel effects in fully depleted SOI devices, Proc. ECS 9th Symp., SOI Technology and Device, Seattle, WA, May 1999Google Scholar
  20. 20.
    V. Barral, Proceedings of IEDM’2007, Dec 2007Google Scholar
  21. 21.
    I. Ben Akkez, C. Fenouillet-Beranger, A. Cros, P. Perreau, S. Haendler, O. Weber, F. Andrieu, D. Pellissier-Tanon, F. Abbate, C. Richard, R. Beneyton, P. Gouraud, A. Margain, C. Borowiak, E. Gourvest, K.K. Bourdelle, B.Y. Nguyen, T. Poiroux, T. Skotnicki, O. Faynot, F. Balestra, G. Ghibaudo, F. Boeuf, Impact of 45° rotated substrate on UTBOX FDSOI high-k metal gate technologies, Proc. VLSI-TSA, Taiwan, Apr 2012Google Scholar
  22. 22.
    F. Balestra et al., Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron. Devices Lett. EDL-8, 410 (1987)CrossRefGoogle Scholar
  23. 23.
    F. Balestra et al., Optimum parameters for high performance volume-inversion MOSFETs in ohmic and saturation regions, Proc. Eur. SOI Workshop (1988), p. F-05Google Scholar
  24. 24.
    J. Brini et al., Threshold voltage and subthreshold slope of the volume-inversion MOS transistor. IEE Proc. G 138, 133 (1991)Google Scholar
  25. 25.
    J. Jomaah, F. Balestra, G. Ghibaudo, Hot-carrier effects in single- and double-gate thin film SOI MOSFETs, Proc. ESSDERC ‘95 (1995), p. 809Google Scholar
  26. 26.
    K. Suzuki et al., Scaling theory for double-gate SOI MOSFETs. IEEE Trans. Electron. Devices ED-40, 2326 (1993)CrossRefGoogle Scholar
  27. 27.
    D. Hisamoto et al., A fully depleted lean-channel transistor (DELTA)—a novel vertical ultrathin SOI MOSFET. IEEE Electron. Devices Lett. 11, 36 (1990)CrossRefGoogle Scholar
  28. 28.
    J. P. Colinge et al., Silicon-on-insulator gate-all-around device, IEDM Tech. Dig. (1990), p. 595Google Scholar
  29. 29.
    D.J. Frank, S.E. Laux, M.V. Fischetti, Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go? IEDM Tech. Dig. (1992), p. 553Google Scholar
  30. 30.
    E. Rauly, O. Potavin, F. Balestra, C. Raynaud, On the subthreshold swing and short channel effects in single and double gate deep submicron SOI MOSFETs. Solid State Electron. 43, 2033 (1999)CrossRefGoogle Scholar
  31. 31.
    M. Luisier, M. Lundstrom, D.A. Antoniadis, J. Bokor, Proceedings IEDM (2011), p. 251Google Scholar
  32. 32.
    V. Barral, Proceedings VLSI’2008Google Scholar
  33. 33.
    S. Hanson, M. Seok, D. Sylvester, D. Blaauw, Nanometer device scaling in subthreshold logic and SRAM. IEEE Trans. Electron. Devices 55, 175–185 (2008)CrossRefGoogle Scholar
  34. 34.
    F. Balestra, Beyond CMOS nanodevices 1 & 2 (ISTE-Wiley, London, 2014)CrossRefGoogle Scholar
  35. 35.
    F. Mayer, C. Le Royer, J.-F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, S. Deleonibus, Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance, Proc. IEDM (2008), pp. 1–5Google Scholar
  36. 36.
    K. Boucart, W. Riess, A.M. Ionescu, Proceedings ESSDERC (2009)Google Scholar
  37. 37.
    Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K.L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, Y.-C. Yeo, Towards direct band-to-band tunneling in P-channel tunneling field effect transistor (TFET): technology enablement by germanium-tin (GeSn), Proc. IEDM (2012), p. 379Google Scholar
  38. 38.
    A. Padilla, C.W. Yeung, C. Shin, C. Hu, T.-J. King Liu, Feedback FET: a novel transistor exhibiting steep switching behavior at low bias voltages, Proc. IEDM (2008), p. 171Google Scholar
  39. 39.
    J. Wan, C. Le Royer, A. Zaslavsky, S. Cristoloveanu, A compact capacitor-less high-speed DRAM using field effect-controlled charge regeneration. IEEE Electron. Devices Lett. 33, 179–181 (2012)CrossRefGoogle Scholar
  40. 40.
    T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat, Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and ≪ 60 mV/dec subthreshold slope, Proc. IEDM (2008), p. 947Google Scholar
  41. 41.
    J. Brini, M. Benachir, G. Ghibaudo, F. Balestra, Subthreshold slope and threshold voltage of the Volume Inversion MOS transistor. IEE Proc. G Circuits Devices Syst. 138, 133 (1991)CrossRefGoogle Scholar
  42. 42.
    F. Conzatti, M.G. Pala, D. Esseni, E. Bano, L. Selmi, A simulation study of strain induced performance enhancements in InAs nanowire Tunnel-FETs, Proc. IEDM (2011), p. 95Google Scholar
  43. 43.
    F. Conzatti, M.G. Pala, D. Esseni, Surface-roughness-induced variability in nanowire InAs tunnel FETs. IEEE Electron. Device Lett. 33, 806–808 (2012)CrossRefGoogle Scholar
  44. 44.
    G. Dewey, B. Chu-Kung, J. Boardman, J.M. Fastenau, Fabrication, characterization and physics of III–V heterojunction tunneling FET for steep subthreshold swing, Proc. IEDM (2011), p. 785Google Scholar
  45. 45.
    J. Appenzeller, Y.-M. Lin, J. Knoch, P. Avouris, Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 193805 (2004)CrossRefGoogle Scholar
  46. 46.
    G. Fiori, G. Iannaccone, Ultralow-voltage bilayer graphene tunnel FET. IEEE Electron. Devices Lett. 30, 1096–1989 (2009)CrossRefGoogle Scholar
  47. 47.
    A. Ionescu, L. De Michielis, N. Dagtekin, Ultra low power: emerging devices and their benefits for integrated circuits, Proc. IEDM (2011), p. 378Google Scholar
  48. 48.
    A. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011)CrossRefGoogle Scholar
  49. 49.
    J.O. Lee, Y.-H. Song, M.-W. Kim, M.-H. Kang, O. Jae-Sub, H.-H. Yang, J.-B. Yoon, A sub-1-volt nanoelectromechanical switching device. Nat. Nanotechnol. 8, 36 (2013)CrossRefGoogle Scholar
  50. 50.
    S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nanoletters 8(2), 405–410 (2008)CrossRefGoogle Scholar
  51. 51.
    G.A. Salvatore, D. Bouvet, A.M. Ionescu, Demonstration of subthreshold swing smaller than 60 mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack, 2008, IEDM Tech. Dig., Electron Devices Meeting (2008), pp. 1–4Google Scholar
  52. 52.
    A. Rusu, G.A. Salvatore, D. Jimenez, A.M. Ionescu, Metal-ferroelectric-metal-oxide-semiconductor field effect transistor with sub-60 mV/decade subthreshold swing and internal voltage amplification, IEDM Tech. Dig. (2010), pp. 16.3.1–16.3.4Google Scholar
  53. 53.
    M.H. Lee, J.-C. Lin, Y.-T. Wei, C.-W. Chen, W.-H. Tu, H.-K. Zhuang, M. Tang, Ferroelectric negative capacitance hetero-tunnel field-effect-transistors with internal voltage amplification. Proc. IEDM 2013, 104 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IMEP-LAHCGrenoble INP-MinatecGrenobleFrance

Personalised recommendations