Skip to main content

Xenotransplantation of Cells, Tissues, Organs and the German Research Foundation Transregio Collaborative Research Centre 127

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 865))

Abstract

Human organ transplantation is the therapy of choice for end-stage organ failure. However, the demand for organs far exceeds the donation rate, and many patients die while waiting for a donor. Clinical xenotransplantation using discordant species, particularly pigs, offers a possible solution to this critical shortfall. Xenotransplantation can also increase the availability of cells, such as neurons, and tissues such as cornea, insulin producing pancreatic islets and heart valves. However, the immunological barriers and biochemical disparities between pigs and primates (human) lead to rejection reactions despite the use of common immunosuppressive drugs. These result in graft vessel destruction, haemorrhage, oedema, thrombus formation, and transplant loss. Our consortium is pursuing a broad range of strategies to overcome these obstacles. These include genetic modification of the donor animals to knock out genes responsible for xenoreactive surface epitopes and to express multiple xenoprotective molecules such as the human complement regulators CD46, 55, 59, thrombomodulin and others. We are using (new) drugs including complement inhibitors (e.g. to inhibit C3 binding), anti-CD20, 40, 40L, and also employing physical protection methods such as macro-encapsulation of pancreatic islets. Regarding safety, a major objective is to assure that possible infections are not transmitted to recipients. While the aims are ambitious, recent successes in preclinical studies suggest that xenotransplantation is soon to become a clinical reality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lund LH, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-first official adult heart transplant report–2014; focus theme: retransplantation. J Heart Lung Transplant. 2014;33(10):996–1008.

    Article  PubMed  Google Scholar 

  2. Rahmel AO. Eurotransplant annual report 2013. www.eurotransplant.org, 2014.

  3. Tonelli M, et al. Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant. 2011;11(10):2093–109.

    Article  CAS  PubMed  Google Scholar 

  4. Reichenspurner H, et al. Optimalization of immunosuppression after xenogeneic heart transplantation in primates. J Heart Transplant. 1989;8(3):200–7. discussion 207–8.

    CAS  PubMed  Google Scholar 

  5. Sautermeister J. Themen der Katholischen Akademie in Bayern. Zur Debatte. 2014;44:19–44.

    Google Scholar 

  6. Leveque X, et al. Intracerebral xenotransplantation: recent findings and perspectives for local immunosuppression. Curr Opin Organ Transplant. 2011;16(2):190–4.

    Article  CAS  PubMed  Google Scholar 

  7. Choi HJ, et al. Efficacy of pig-to-rhesus lamellar corneal xenotransplantation. Invest Ophthalmol Vis Sci. 2011;52(9):6643–50.

    Article  PubMed  Google Scholar 

  8. Kim MK, et al. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of xenocorneal transplantation. Xenotransplantation. 2014;21(5):420–30.

    Article  PubMed  Google Scholar 

  9. International Diabetes Federation. Diabetes Atlas. 6th ed. Brussels: International Diabetes Federation; 2014.

    Google Scholar 

  10. Bellin MD, et al. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant. 2012;12(6):1576–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tiwari JL, et al. Islet cell transplantation in type 1 diabetes: an analysis of efficacy outcomes and considerations for trial designs. Am J Transplant. 2012;12(7):1898–907.

    Article  CAS  PubMed  Google Scholar 

  12. Collaborative islet transplant registry. Annual report 2013. www.citeregistry.org

  13. Ludwig B, et al. Islet transplantation at the Dresden diabetes center: five years’ experience. Horm Metab Res. 2015;47(1):4–8.

    CAS  PubMed  Google Scholar 

  14. Cardona K, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med. 2006;12(3):304–6.

    Article  CAS  PubMed  Google Scholar 

  15. Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation. 2010;90(10):1054–62.

    Article  PubMed  Google Scholar 

  16. van der Windt DJ, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant. 2009;9(12):2716–26.

    Article  PubMed  Google Scholar 

  17. Collas V, Philipsen T, Rodrigues J, Vrints C, Paelinck BP, Bosmans J. Transcatheter aortic valve implantation: review and current state of the art. EMJ Int Cardiol. 2014;1:52–61.

    Google Scholar 

  18. Kouchoukos NT, Blackstone E, Hanley FL, Kirklin JK. Kirklin/Barratt-Boyes cardiac surgery. 4th ed. London: Churchill Livingstone; 2012.

    Google Scholar 

  19. Rieder E, et al. Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation. 2005;111(21):2792–7.

    Article  PubMed  Google Scholar 

  20. Mueller NJ, et al. Microbial safety in xenotransplantation. Curr Opin Organ Transplant. 2011;16(2):201–6.

    Article  PubMed  Google Scholar 

  21. Diswall M, et al. Structural characterization of alpha1,3-galactosyltransferase knockout pig heart and kidney glycolipids and their reactivity with human and baboon antibodies. Xenotransplantation. 2010;17(1):48–60.

    Article  PubMed  Google Scholar 

  22. Byrne GW, et al. Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation. 2011;91(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  23. Ierino FL, et al. Disseminated intravascular coagulation in association with the delayed rejection of pig-to-baboon renal xenografts. Transplantation. 1998;66(11):1439–50.

    Article  CAS  PubMed  Google Scholar 

  24. Buhler L, et al. Coagulation and thrombotic disorders associated with pig organ and hematopoietic cell transplantation in nonhuman primates. Transplantation. 2000;70(9):1323–31.

    Article  CAS  PubMed  Google Scholar 

  25. Houser SL, et al. Thrombotic microangiopathy and graft arteriopathy in pig hearts following transplantation into baboons. Xenotransplantation. 2004;11(5):416–25.

    Article  PubMed  Google Scholar 

  26. Cozzi E, et al. Alterations in the coagulation profile in renal pig-to-monkey xenotransplantation. Am J Transplant. 2004;4(3):335–45.

    Article  CAS  PubMed  Google Scholar 

  27. Kuwaki K, et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med. 2005;11(1):29–31.

    Article  CAS  PubMed  Google Scholar 

  28. Cowan PJ, Roussel JC, d’Apice AJ. The vascular and coagulation issues in xenotransplantation. Curr Opin Organ Transplant. 2009;14(2):161–7.

    Article  PubMed  Google Scholar 

  29. Lin CC, et al. Recipient tissue factor expression is associated with consumptive coagulopathy in pig-to-primate kidney xenotransplantation. Am J Transplant. 2010;10(7):1556–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Roussel JC, et al. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant. 2008;8(6):1101–12.

    Article  CAS  PubMed  Google Scholar 

  31. van der Windt DJ, et al. Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation. 2007;14(4):288–97.

    Article  PubMed  Google Scholar 

  32. Hawthorne WJ, et al. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J Transplant. 2014;14(6):1300–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Calafiore R, et al. Grafts of microencapsulated pancreatic islet cells for the therapy of diabetes mellitus in non-immunosuppressed animals. Biotechnol Appl Biochem. 2004;39:159–64.

    Article  CAS  PubMed  Google Scholar 

  34. Wynyard S, et al. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation. 2014;21(4):309–23.

    Article  PubMed  Google Scholar 

  35. Rokstad AM, et al. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev. 2014;67–68:111–30.

    Article  PubMed  Google Scholar 

  36. Dolgin E. Encapsulate this. Nat Med. 2014;20(1):9–11.

    Article  CAS  PubMed  Google Scholar 

  37. Ludwig B, et al. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A. 2013;110(47):19054–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ludwig B, et al. Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist. Proc Natl Acad Sci U S A. 2012;109(13):5022–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Galili U. Discovery of the natural anti-Gal antibody and its past and future relevance to medicine. Xenotransplantation. 2013;20(3):138–47.

    PubMed  Google Scholar 

  40. Phelps CJ, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299(5605):411–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yamada K, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med. 2005;11(1):32–4.

    Article  CAS  PubMed  Google Scholar 

  42. Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1995;1(9):964–6.

    Article  CAS  PubMed  Google Scholar 

  43. Cowan PJ, et al. Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation. 2000;69(12):2504–15.

    Article  CAS  PubMed  Google Scholar 

  44. Diamond LE, et al. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation. 2001;71(1):132–42.

    Article  CAS  PubMed  Google Scholar 

  45. Miyagawa S, et al. Complement regulation in the GalT KO era. Xenotransplantation. 2010;17(1):11–25.

    Article  PubMed  Google Scholar 

  46. Ekser B, et al. Clinical xenotransplantation: the next medical revolution? Lancet. 2012;379(9816):672–83.

    Article  PubMed  Google Scholar 

  47. Pierson 3rd RN. Antibody-mediated xenograft injury: mechanisms and protective strategies. Transpl Immunol. 2009;21(2):65–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Petersen B, et al. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation. 2011;18(6):355–68.

    Article  PubMed  Google Scholar 

  49. Weiss EH, et al. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation. 2009;87(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  50. Petersen B, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation. 2009;16(6):486–95.

    Article  PubMed  Google Scholar 

  51. Mohiuddin MM, et al. One-year heterotopic cardiac xenograft survival in a pig to baboon model. Am J Transplant. 2014;14(2):488–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wuensch A, et al. Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation. 2014;97(2):138–47.

    Article  CAS  PubMed  Google Scholar 

  53. Mohiuddin MM, et al. Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg. 2014;148(3):1106–13. discussion 1113–4.

    Article  PubMed  Google Scholar 

  54. Heinzelmann F, et al. Immunosuppressive total lymphoid irradiation-based reconditioning regimens enable engraftment after graft rejection or graft failure in patients treated with allogeneic hematopoietic stem cell transplantation. Int J Radiat Oncol Biol Phys. 2008;70(2):523–8.

    Article  PubMed  Google Scholar 

  55. Hering BJ, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med. 2006;12(3):301–3.

    Article  CAS  PubMed  Google Scholar 

  56. Klymiuk N, et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes. 2012;61(6):1527–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60.

    Article  CAS  PubMed  Google Scholar 

  58. Bauer A, et al. First experience with heterotopic thoracic pig-to-baboon cardiac xenotransplantation. Xenotransplantation. 2010;17(3):243–9.

    Article  PubMed  Google Scholar 

  59. McGregor C, et al. Cardiac function after preclinical orthotopic cardiac xenotransplanation. Am J Transplant. 2009;9(Suppl):380.

    Google Scholar 

  60. Badin R, et al. Long-term clinical recovery in Parkinsonian monkey recipients of CTLA4-Ig transgenic porcine neural precursors. Transplantation. 2010;90 Suppl 2:47.

    Article  Google Scholar 

  61. Baldan N, et al. Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: a phenomenon related to immunological events? Am J Transplant. 2004;4:475–81.

    Article  PubMed  Google Scholar 

  62. Ramirez P, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation. 2000;70(7):989–98.

    Article  CAS  PubMed  Google Scholar 

  63. Cantu E, et al. Prolonged function of macrophage, von Willebrand factor-deficient porcine pulmonary xenografts. Am J Transplant. 2007;7(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  64. Mohiuddin M. Key note lecture: recent breakthroughs in pig-to-primate cardiac xenotransplantation. Sharing advances on large animal models-SALAAM, COST Action BM1308, Munich, December 15–17, 2014.

    Google Scholar 

  65. Nilsson B, et al. The role of complement in biomaterial-induced inflammation. Mol Immunol. 2007;44(1-3):82–94.

    Article  CAS  PubMed  Google Scholar 

  66. Scobie L, Takeuchi Y. Porcine endogenous retrovirus and other viruses in xenotransplantation. Curr Opin Organ Transplant. 2009;14(2):175–9.

    Article  PubMed  Google Scholar 

  67. Le Tissier P, et al. Two sets of human-tropic pig retrovirus. Nature. 1997;389(6652):681–2.

    Article  PubMed  Google Scholar 

  68. Klymiuk N, et al. Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. J Virol. 2002;76(22):11738–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bartosch B, et al. Evidence and consequence of porcine endogenous retrovirus recombination. J Virol. 2004;78:13880–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. First and second WHO global consultations on regulatory requirements for xenotransplantation clinical trials. Changsha, China, November 19–21, 2008; Geneva, Switzerland, October 17–19, 2011. http://www.who.int/transplantation/xeno/en/

  71. Denner J, Schuurman HJ, Patience C. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 5: strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation. 2009;16(4):239–48.

    Article  PubMed  Google Scholar 

Download references

Funding

The Transregio Collaborative Research Center 127 is funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Reichart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Reichart, B. et al. (2015). Xenotransplantation of Cells, Tissues, Organs and the German Research Foundation Transregio Collaborative Research Centre 127. In: Lambris, J., Ekdahl, K., Ricklin, D., Nilsson, B. (eds) Immune Responses to Biosurfaces. Advances in Experimental Medicine and Biology, vol 865. Springer, Cham. https://doi.org/10.1007/978-3-319-18603-0_9

Download citation

Publish with us

Policies and ethics