Skip to main content

Molecular Characterization of Macrophage-Biomaterial Interactions

  • Conference paper
Book cover Immune Responses to Biosurfaces

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 865))

Abstract

Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratner BD. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Release. 2002;78(1-3):211–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kyriakides TR, et al. The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation. Am J Pathol. 2004;165(6):2157–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wilson CJ, et al. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1-2):1–18.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dadsetan M, et al. In vivo biocompatibility and biodegradation of poly(ethylene carbonate). J Control Release. 2003;93(3):259–70.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Q, et al. Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res. 1991;25(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  7. Klueh U, Dorsky DI, Kreutzer DL. Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization. Biomaterials. 2005;26(10):1155–63.

    Article  CAS  PubMed  Google Scholar 

  8. Park KM, Gerecht S. Harnessing developmental processes for vascular engineering and regeneration. Development. 2014;141(14):2760–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Henao-Mejia J, et al. Inflammasomes: far beyond inflammation. Nat Immunol. 2012;13(4):321–4.

    Article  CAS  PubMed  Google Scholar 

  10. Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 2009;19(9):455–64.

    Article  CAS  PubMed  Google Scholar 

  11. Strowig T, et al. Inflammasomes in health and disease. Nature. 2012;481(7381):278–86.

    Article  CAS  PubMed  Google Scholar 

  12. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397–411.

    Article  CAS  PubMed  Google Scholar 

  13. St Pierre CA, et al. Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-particles. J Orthop Res. 2010;28(11):1418–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Maitra R, et al. Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol. 2009;47(2-3):175–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bueter CL, et al. Spectrum and mechanisms of inflammasome activation by chitosan. J Immunol. 2014;192(12):5943–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Malik AF, et al. Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response. Proc Natl Acad Sci U S A. 2011;108(50):20095–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Helming L, Gordon S. Molecular mediators of macrophage fusion. Trends Cell Biol. 2009;19(10):514–22.

    Article  CAS  PubMed  Google Scholar 

  18. Brodbeck WG, Anderson JM. Giant cell formation and function. Curr Opin Hematol. 2009;16(1):53–7.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Helming L, Gordon S. The molecular basis of macrophage fusion. Immunobiology. 2007;212(9-10):785–93.

    Article  CAS  PubMed  Google Scholar 

  20. Anderson JM. Multinucleated giant cells. Curr Opin Hematol. 2000;7(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  21. McNally AK, Anderson JM. Macrophage fusion and multinucleated giant cells of inflammation. Adv Exp Med Biol. 2011;713:97–111.

    Article  CAS  PubMed  Google Scholar 

  22. Helming L, Gordon S. Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur J Immunol. 2007;37(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, et al. In vivo quantitative and qualitative assessment of foreign body giant cell formation on biomaterials in mice deficient in natural killer lymphocyte subsets, mast cells, or the interleukin-4 receptoralpha and in severe combined immunodeficient mice. J Biomed Mater Res A. 2014;102(6):2017–23.

    Article  PubMed  Google Scholar 

  24. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46.

    Article  CAS  PubMed  Google Scholar 

  25. Kyriakides TR, Bornstein P. Matricellular proteins as modulators of wound healing and the foreign body response. Thromb Haemost. 2003;90(6):986–92.

    CAS  PubMed  Google Scholar 

  26. Morris AH, Kyriakides TR. Matricellular proteins and biomaterials. Matrix Biol. 2014;37:183–91.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Laskin DL. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem Res Toxicol. 2009;22(8):1376–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Brown BN, et al. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15):3792–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sussman EM, et al. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann Biomed Eng. 2014;42(7):1508–16.

    Article  PubMed  Google Scholar 

  31. Wolf MT, et al. Predicting In Vivo Responses to Biomaterials via Combined In Vitro and In Silico Analysis. Tissue Eng Part C Methods. 2014;21(2):148–59.

    Article  PubMed  Google Scholar 

  32. Mooney JE, et al. Transcriptional switching in macrophages associated with the peritoneal foreign body response. Immunol Cell Biol. 2014;92(6):518–26.

    Article  CAS  PubMed  Google Scholar 

  33. Daley JM, et al. The phenotype of murine wound macrophages. J Leukoc Biol. 2010;87(1):59–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mantovani A, et al. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  36. Moore LB, et al. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFkappaB activation in the foreign body response. Acta Biomater. 2015;11:37–47.

    Article  CAS  PubMed  Google Scholar 

  37. Skokos EA, et al. Lack of TNF-alpha-induced MMP-9 production and abnormal E-cadherin redistribution associated with compromised fusion in MCP-1-null macrophages. Am J Pathol. 2011;178(5):2311–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. McNally AK, Anderson JM. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol. 1995;147(5):1487–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Yagi M, et al. Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells. J Bone Miner Metab. 2006;24(5):355–8.

    Article  CAS  PubMed  Google Scholar 

  40. MacLauchlan S, et al. Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9. J Leukoc Biol. 2009;85(4):617–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Moreno JL, et al. IL-4 promotes the formation of multinucleated giant cells from macrophage precursors by a STAT6-dependent, homotypic mechanism: contribution of E-cadherin. J Leukoc Biol. 2007;82(6):1542–53.

    Article  CAS  PubMed  Google Scholar 

  42. Helming L, et al. Essential role of DAP12 signaling in macrophage programming into a fusion-competent state. Sci Signal. 2008;1(43):ra11.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Jay SM, et al. Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation. Am J Pathol. 2007;171(2):632–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Helming L, Winter J, Gordon S. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J Cell Sci. 2009;122(Pt 4):453–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lemaire I, Falzoni S, Adinolfi E. Purinergic signaling in giant cell formation. Front Biosci (Elite Ed). 2012;4:41–55.

    Article  Google Scholar 

  46. Chen S, et al. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials. 2010;31(13):3479–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Chang DT, Colton E, Anderson JM. Paracrine and juxtacrine lymphocyte enhancement of adherent macrophage and foreign body giant cell activation. J Biomed Mater Res A. 2009;89(2):490–8.

    Article  PubMed  Google Scholar 

  48. Blakney AK, Swartzlander MD, Bryant SJ. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A. 2012;100(6):1375–86.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62.

    Article  CAS  PubMed  Google Scholar 

  50. Suska F, et al. In vivo cytokine secretion and NF-kappaB activation around titanium and copper implants. Biomaterials. 2005;26(5):519–27.

    Article  CAS  PubMed  Google Scholar 

  51. Fet N, et al. In vivo characterisation of the inflammatory reaction following mesh implantation in transgenic mice models. Langenbecks Arch Surg. 2014;399(5):579–88.

    Article  CAS  PubMed  Google Scholar 

  52. Cui W, et al. The intracellular domain of CD44 promotes the fusion of macrophages. Blood. 2006;107(2):796–805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yu M, et al. NF-kappaB signaling participates in both RANKL- and IL-4-induced macrophage fusion: receptor cross-talk leads to alterations in NF-kappaB pathways. J Immunol. 2011;187(4):1797–806.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Busuttil SJ, et al. A central role for plasminogen in the inflammatory response to biomaterials. J Thromb Haemost. 2004;2(10):1798–805.

    Article  CAS  PubMed  Google Scholar 

  55. Tang L, Jiang W, Welty SE. The participation of P- and E-selectins on biomaterial-mediated tissue responses. J Biomed Mater Res. 2002;62(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  56. Miyamoto H, et al. Osteoclast stimulatory transmembrane protein and dendritic cell-specific transmembrane protein cooperatively modulate cell-cell fusion to form osteoclasts and foreign body giant cells. J Bone Miner Res. 2012;27(6):1289–97.

    Article  CAS  PubMed  Google Scholar 

  57. Gonzalo P, et al. MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling. Dev Cell. 2010;18(1):77–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Keselowsky BG, et al. Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials. 2007;28(25):3626–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Rhee I, et al. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12. Mol Cell Biol. 2013;33(12):2458–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Miyamoto H, et al. An essential role for STAT6-STAT1 protein signaling in promoting macrophage cell-cell fusion. J Biol Chem. 2012;287(39):32479–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Tsai AT, et al. The role of osteopontin in foreign body giant cell formation. Biomaterials. 2005;26(29):5835–43.

    Article  CAS  PubMed  Google Scholar 

  62. Kao WJ, et al. Role for interleukin-4 in foreign-body giant cell formation on a poly(etherurethane urea) in vivo. J Biomed Mater Res. 1995;29(10):1267–75.

    Article  CAS  PubMed  Google Scholar 

  63. Kyriakides TR, et al. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci U S A. 1999;96(8):4449–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Puolakkainen P, et al. Compromised production of extracellular matrix in mice lacking secreted protein, acidic and rich in cysteine (SPARC) leads to a reduced foreign body reaction to implanted biomaterials. Am J Pathol. 2003;162(2):627–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Barker TH, et al. Matricellular homologs in the foreign body response: hevin suppresses inflammation, but hevin and SPARC together diminish angiogenesis. Am J Pathol. 2005;166(3):923–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Chuang-Tsai S, et al. Reduction in fibrotic tissue formation in mice genetically deficient in plasminogen activator inhibitor-1. Am J Pathol. 2003;163(2):445–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Zaveri TD, et al. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials. 2014;35(11):3504–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  69. Perera RJ, Ray A. MicroRNAs in the search for understanding human diseases. BioDrugs. 2007;21(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  70. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  71. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.

    CAS  PubMed  Google Scholar 

  72. Anglicheau D, Muthukumar T, Suthanthiran M. MicroRNAs: small RNAs with big effects. Transplantation. 2010;90(2):105–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Suarez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ Res. 2009;104(4):442–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Selbach M, et al. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58–63.

    Article  CAS  PubMed  Google Scholar 

  75. Cheng HS, et al. Noncoding RNAs regulate NF-kappaB signaling to modulate blood vessel inflammation. Front Genet. 2014;5:422.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Pellegrino L, et al. miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res. 2013;41(10):5400–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Fontana L, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol. 2007;9(7):775–87.

    Article  CAS  PubMed  Google Scholar 

  78. Montagner S, Deho L, Monticelli S. MicroRNAs in hematopoietic development. BMC Immunol. 2014;15:14.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Cekaite L, Clancy T, Sioud M. Increased miR-21 expression during human monocyte differentiation into DCs. Front Biosci (Elite Ed). 2010;2:818–28.

    Article  Google Scholar 

  80. Nothnick WB. Regulation of uterine matrix metalloproteinase-9 and the role of microRNAs. Semin Reprod Med. 2008;26(6):494–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Xin M, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23(18):2166–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Sugatani T, Hruska KA. MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem. 2007;101(4):996–9.

    Article  CAS  PubMed  Google Scholar 

  83. Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117(13):3648–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Li YT, et al. Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum. 2012;64(10):3240–5.

    Article  CAS  PubMed  Google Scholar 

  85. Shibuya H, et al. Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol. 2013;23(4):674–85.

    Article  CAS  PubMed  Google Scholar 

  86. Chen SY. MicroRNA-223: a double-edged sword in rheumatoid arthritis. Rheumatol Int. 2014;34(2):285–6.

    Article  PubMed  Google Scholar 

  87. Dou C, et al. MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. Biochim Biophys Acta. 2014;1839(11):1084–96.

    Article  CAS  PubMed  Google Scholar 

  88. Dormoy-Raclet V, et al. HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nat Commun. 2013;4:2388.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res. 2006;34(20):5863–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sissons JR, et al. Cutting edge: microRNA regulation of macrophage fusion into multinucleated giant cells. J Immunol. 2012;189(1):23–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themis R. Kyriakides Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Moore, L.B., Kyriakides, T.R. (2015). Molecular Characterization of Macrophage-Biomaterial Interactions. In: Lambris, J., Ekdahl, K., Ricklin, D., Nilsson, B. (eds) Immune Responses to Biosurfaces. Advances in Experimental Medicine and Biology, vol 865. Springer, Cham. https://doi.org/10.1007/978-3-319-18603-0_7

Download citation

Publish with us

Policies and ethics