Skip to main content

Matsumoto–Yor Process and Infinite Dimensional Hyperbolic Space

  • Chapter
In Memoriam Marc Yor - Séminaire de Probabilités XLVII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2137))

Abstract

The Matsumoto–Yor process is \(\int _{0}^{t}\exp (2B_{s} - B_{t})\,ds,t \geq 0\), where (B t ) is a Brownian motion. It is shown that it is the limit of the radial part of the Brownian motion at the bottom of the spectrum on the hyperbolic space of dimension q, when q tends to infinity. Analogous processes on infinite series of non compact symmetric spaces and on regular trees are described.

A la mémoire de Marc Yor, avec admiration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ph., Anker, Ph. Bougerol, Th. Jeulin, The infinite Brownian loop on a symmetric space. Rev. Mat. Iberoamericana 18(1), 41–97 (2002)

    Google Scholar 

  2. F. Baudoin, Further exponential generalization of Pitman’s 2MX theorem. Electron. Commun. Probab. 7, 37–46 (2002)

    Article  MathSciNet  Google Scholar 

  3. F. Baudoin, N. O’Connell, Exponential functionals of Brownian motion and class-one Whittaker functions. Ann. Inst. Henri Poincaré Probab. Stat. 47(4), 1096–1120 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ph. Biane, Introduction to random walks on noncommutative spaces, in Quantum Potential Theory. Lecture Notes in Mathematics, vol. 1954 (Springer, Berlin, 2008), pp. 61–116

    Google Scholar 

  5. Ph. Bougerol, Exemples de théorèmes locaux sur les groupes résolubles. Ann. Inst. H. Poincaré Sect. Probab. Stat. 19(4), 369–391 (1983)

    MATH  MathSciNet  Google Scholar 

  6. D. Bump, Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  7. J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry, Hyperbolic geometry, in Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, 59–115 (Cambridge Univ. Press, Cambridge, 1997)

    Google Scholar 

  8. P. Cartier, Fonctions harmoniques sur un arbre. Symposia Mathematica, vol. IX (Academic, London, 1972), pp. 203–270

    Google Scholar 

  9. D.I. Cartwright, V.A. Kaimanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees. Ann. Inst. Fourier 44(4), 1243–1288 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Chhaibi, Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion. PhD Thesis, Université Pierre et Marie Curie — Paris VI (2013) [arXiv:1302.0902]

    Google Scholar 

  11. M. Cowling, G. Gaudry, S. Giulini, G. Mauceri, Weak type (1,1) estimates for heat kernel maximal functions on Lie groups. Trans. Am. Math. Soc. 323(2), 637–649 (1991)

    MATH  MathSciNet  Google Scholar 

  12. M. Cowling, S. Giulini, A. Hulanicki, G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. Studia Math. 111, 103–121 (1994)

    MATH  MathSciNet  Google Scholar 

  13. E.B. Davies, Heat Kernel and Spectral Theory (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  14. A. Figa-Talamanca, C. Nebbia, Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees. London Mathematical Society Lecture Note Series, vol. 162 (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  15. J. Franchi, Y. Le Jan, Hyperbolic Dynamics and Brownian Motion, An Introduction. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2012)

    Book  MATH  Google Scholar 

  16. R. Gangolli, V.S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 101 (Springer, Berlin, 1988)

    Google Scholar 

  17. Y. Guivarc’h, L. Ji, J.C. Taylor, Compactifications of Symmetric Spaces. Progress in Mathematics, vol. 156 (Birkhäuser, Boston, 1998)

    Google Scholar 

  18. S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions. Pure and Applied Mathematics, vol. 113 (Academic, 1984)

    Google Scholar 

  19. B. Hoogenboom, Spherical functions and invariant differential operators on complex Grassmann manifolds. Ark. Mat. 20(1), 69–85 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. V.I. Inozemtsev, The finite Toda lattices. Commun. Math. Phys. 121(4), 629–638 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Mathematical Library, vol. 24 (North Holland, Amsterdam, 1989)

    Google Scholar 

  22. A. Iozzi, D.W. Morris, Cartan-decomposition subgroups of SU(2, n). J. Lie Theory 11(2), 505–543 (2001)

    MATH  MathSciNet  Google Scholar 

  23. A.W. Knapp, Lie Groups, Beyond an Introduction (Birkhäuser, Boston, 2002)

    MATH  Google Scholar 

  24. Q.K. Lu, The heat kernels of non compact symmetric spaces, in Analysis and Geometry on Complex Homogeneous Domains, ed. by Faraut et al. Progress in Mathematics, vol. 185 (Birkhäuser, Basel, 2000)

    Google Scholar 

  25. H. Matsumoto, Y. Ogura, Markov or non-Markov property of cMX processes. J. Math. Soc. Jpn. 56, 519–540 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Matsumoto, M. Yor, A version of Pitman’s 2MX theorem for geometric Brownian motions. C. R. Acad. Sci. Paris, Ser. I 328, 1067–1074 (1999)

    Google Scholar 

  27. H. Matsumoto, M. Yor, An analogue of Pitman’s 2MX theorem for exponential Wiener functionals. Part I: A time-inversion approach. Nagoya Math. J. 159, 125–166 (2000)

    MATH  MathSciNet  Google Scholar 

  28. H. Matsumoto, M. Yor, An analogue of Pitman’s 2MX theorem for exponential Wiener functionals. Part II: The role of the generalized inverse Gaussian laws. Nagoya Math. J. 162, 65–86 (2001)

    MATH  MathSciNet  Google Scholar 

  29. N. O’Connell, Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. M.A. Olshanetsky, A.M. Perelomov, Quantum systems connected with root systems and the radial parts of Laplace operators. Funct. Anal. Appl. 12(2), 60–68 (1978)

    Google Scholar 

  31. M.A. Olshanetsky, A.M. Perelomov, Quantum integrable systems related to Lie algebras. Phys. Rep. 94(6), 313–404 (1983)

    Article  MathSciNet  Google Scholar 

  32. T. Oshima, N. Shimeno, Heckman-Opdam hypergeometric functions and their specializations, in New Viewpoints of Representation Theory and Noncommutative Harmonic Analysis? RIMS Kôkyûroku Bessatsu, vol. B20 (2010), pp. 129–162

    Google Scholar 

  33. Y. Pinchover, Large time behaviour of the heat kernel and the behaviour of the Green function near criticality for nonsymmetric elliptic operators. J. Funct. Anal. 104, 54–70 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. R.G. Pinsky, Positive Harmonic Functions and Diffusion. Cambridge Studies Advanced Mathematics, vol. 45 (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  35. J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7(3), 511–526 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  36. B. Rider, B. Valko, Matrix Dufresne identities (2014) [arXiv:1409.1954]

    Google Scholar 

  37. P. Sawyer, Spherical functions on SO( p, q)∕SO( p) × SO(q). Canad. Math. Bull. 42(4), 486–498 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. N. Shimeno, A limit transition from the Heckman-Opdam hypergeometric functions to the Whittaker functions associated with root systems (2008) [arXiv:0812.3773]

    Google Scholar 

  39. W. Woess, Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138 (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Bougerol .

Editor information

Editors and Affiliations

Appendix: Asymptotics of Spherical Functions in Rank One

Appendix: Asymptotics of Spherical Functions in Rank One

We describe the needed asymptotic behaviour of spherical functions on SO(1, q), SU(1, q) and Sp(1, q) when \(q \rightarrow +\infty \). We adapt Shimeno [38] to this setting (which only considers the real split case) and Oshima and Shimeno [32]. The advantage of this approach is that it is adapted to higher rank cases. The details of the computations are quite long but straightforward. Therefore we only indicate the main points of the proof where they differ from [38].

We adapt the notions of Sect. 5.1 to the rank one case. In this case there are at most two roots, α and 2α and we may suppose that α(r) = r when \(r \in \mathfrak{a} = \mathbb{R}\). Their multiplicity are \((m_{\alpha },m_{2\alpha }) = (q - 1,0)\) for SO(1, q), (2(q − 1), 1) for SU(1, q) and (4(q − 1), 3) for Sp(1, q). Let

$$\displaystyle{\varrho _{q} = \frac{1} {2}(m_{\alpha } + 2m_{2\alpha }),}$$

and

$$\displaystyle{ \delta _{q}(r) = (e^{r} - e^{-r})^{m_{\alpha }}(e^{2r} - e^{-2r})^{m_{2\alpha } }. }$$
(14)

Then (see (5.1))

$$\displaystyle\begin{array}{rcl} H_{CMS}& =& \delta _{q}^{1/2} \circ \{\varDelta _{ R} +\rho _{ q}^{2}\} \circ \delta _{ q}^{-1/2} {}\\ & =& \frac{d^{2}} {dr^{2}} -\frac{m_{\alpha }(m_{\alpha } + 2m_{2\alpha } - 2)} {\sinh ^{2}r} -\frac{m_{2\alpha }(m_{2\alpha } - 2)} {\sinh ^{2}2r}. {}\\ \end{array}$$

For \(\lambda \in \mathbb{C}\), the spherical function \(\varphi _{\lambda }\) satisfies

$$\displaystyle{\varDelta _{R}\tilde{\varphi }_{\lambda } = (\lambda ^{2} -\varrho _{ q}^{2})\tilde{\varphi }_{\lambda },}$$

where \(\tilde{\varphi }_{\lambda }(r) =\varphi _{\lambda }(D_{1}(r))\), \(r \in \mathbb{R}\), therefore,

$$\displaystyle{H_{CMS}(\delta _{q}^{1/2}\tilde{\varphi }_{ \lambda }) =\lambda ^{2}\delta _{ q}^{1/2}\tilde{\varphi }_{ \lambda }.}$$

There exists a unique function \(\varPsi _{CMS}(\lambda,q,r),r \in \mathbb{R}\), of the form

$$\displaystyle{ \varPsi _{CMS}(\lambda,q,r) =\sum _{n\in \mathbb{N}}b_{n}(\lambda,q)e^{(\lambda -n)r},\quad b_{ 0}(\lambda,q) = 1, }$$
(15)

such that

$$\displaystyle{ H_{CMS}\varPsi _{CMS} =\lambda ^{2}\,\varPsi _{ CMS}, }$$
(16)

(see [38, (17)]). When \(q \rightarrow +\infty \),

$$\displaystyle{\lim H_{CMS}(r +\log m_{\alpha }) = H_{T},}$$

where H T is the Toda type Hamiltonian

$$\displaystyle{H_{T} = \frac{d^{2}} {dr^{2}} - e^{-2r}.}$$

There is also a unique function \(\varPsi _{\text{T}}(\lambda,r),r \in \mathbb{R}\), of the form

$$\displaystyle{ \varPsi _{T}(\lambda,r) =\sum _{n\in \mathbb{N}}b_{n}(\lambda )e^{(\lambda -n)r},\quad b_{ 0}(\lambda ) = 1, }$$
(17)

such that

$$\displaystyle{H_{T}\varPsi _{T} =\lambda ^{2}\varPsi _{ T},}$$

([38], notice that this is the function denoted \(\varPsi _{T}(-\lambda,-r)\) in [38]).

Lemma 9

If \(\lambda \in \mathfrak{a}_{\mathbb{C}}^{{\ast}}\) and \(2\lambda \not\in \mathbb{Z}^{{\ast}}\) , then

$$\displaystyle{\lim _{q\rightarrow +\infty } \frac{1} {m_{\alpha }^{\lambda }}\varPsi _{CMS}(\lambda,q,r +\log m_{\alpha }) =\varPsi _{T}(\lambda,r)}$$

Proof

The proof is similar to the one of Proposition 1 in [38].

Let

$$\displaystyle{ a(q) = \frac{\varGamma (m_{\alpha }/2)^{2}} {\varGamma (m_{\alpha })2^{1+3m_{2\alpha }/2}}, }$$
(18)

and

$$\displaystyle{ g_{q}(\lambda,r) = a(q)(\delta _{q}^{1/2}\tilde{\varphi }_{ \lambda })(\log m_{\alpha } + r) - K_{\lambda }(e^{-r}). }$$
(19)

Proposition 11

Uniformly on \(\lambda\) in a small neighborhood of 0 in \(\mathbb{C}\) , \(\lambda g_{q}(\lambda,r)\) and its derivatives in \(\lambda\) converge to 0 as \(q \rightarrow +\infty \) .

Proof

Using the Harish Chandra spherical function expansion of \(\varphi _{\lambda }\) (see [18, Theorems IV.5.5 and IV.6.4] or [16]), when \(\lambda\) is for instance in the ball \(\{\lambda \in \mathbb{C};\vert \lambda \vert \leq 1/4\}\) and \(\lambda \not =0\), one has

$$\displaystyle{\delta _{q}^{1/2}(r)\tilde{\varphi }_{\lambda }(r) = c(\lambda )\varPsi _{ CMS}(\lambda,q,r) + c(-\lambda )\varPsi _{CMS}(-\lambda,q,r),}$$

where

$$\displaystyle{c(\lambda ) = \frac{2^{\frac{1} {2} m_{\alpha }+m_{2\alpha }-\lambda }\varGamma (\frac{1}{2}(m_{\alpha } + m_{2\alpha } + 1))} {\varGamma (\frac{1} {2}(\frac{1} {2}m_{\alpha } + 1+\lambda ))\varGamma (\frac{1} {2}(\frac{1} {2}m_{\alpha } + m_{2\alpha }+\lambda ))}.}$$

It follows from Lemma 9 that

$$\displaystyle{\lim _{q\rightarrow +\infty }a(q)c(\lambda ) \frac{1} {m_{\alpha }^{\lambda }}\varPsi _{CMS}(\lambda,q,r +\log m_{\alpha }) =\varGamma (\lambda )2^{\lambda -1}\varPsi _{ T}(\lambda,r).}$$

Hence

$$\displaystyle{\lim _{q\rightarrow +\infty }a(q)(\delta _{q}^{1/2}\tilde{\varphi }_{ \lambda })(r +\log m_{\alpha }) =\varGamma (\lambda )2^{\lambda -1}\varPsi _{ T}(\lambda,r) +\varGamma (-\lambda )2^{-\lambda -1}\varPsi _{ T}(-\lambda,r).}$$

The limit can be expressed in terms of the Whittaker function for \(Sl(2, \mathbb{R})\) as in [38, Theorem 3]. Due to the relation between Whittaker and Macdonald functions (see, e.g., Bump [6]), one finds that this limit is \(K_{\lambda }(e^{-r})\), thus \(g_{q}(\lambda,r)\) tends to 0 when \(q \rightarrow +\infty \).

Now we remark that, for r fixed, the functions \(\lambda g_{q}(\lambda,r)\) are analytic functions in \(\lambda\) in the ball \(\{\lambda \in \mathbb{C};\vert \lambda \vert \leq 1/4\}\) which are uniformly bounded in q by the computations of [38, Proposition 1]. Notice that we have to multiply by \(\lambda\) to avoid the singularity at 0 of the Harish Chandra c function. The uniform convergence of \(\lambda g_{q}(\lambda,r)\) and its derivatives in \(\lambda\) thus follows from Montel’s theorem.

Corollary 4

As \(q \rightarrow +\infty \) , \(g_{q}(\lambda,r)\) and all its derivatives at \(\lambda = 0\) converge to 0.

Proof

This follows from the proposition and the fact that

$$\displaystyle{\frac{d^{n}} {d\lambda ^{n}}g_{q}(\lambda,r)_{\{\lambda =0\}} = \frac{1} {n + 1} \frac{d^{n+1}} {d\lambda ^{n+1}}(\lambda g_{q}(\lambda,r))_{\{\lambda =0\}}.}$$

Remark 7

A small mistake in the constant in [38, Example 1] is corrected in [32].

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bougerol, P. (2015). Matsumoto–Yor Process and Infinite Dimensional Hyperbolic Space. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) In Memoriam Marc Yor - Séminaire de Probabilités XLVII. Lecture Notes in Mathematics(), vol 2137. Springer, Cham. https://doi.org/10.1007/978-3-319-18585-9_23

Download citation

Publish with us

Policies and ethics