Skip to main content

Convergence Towards Linear Combinations of Chi-Squared Random Variables: A Malliavin-Based Approach

  • Chapter
In Memoriam Marc Yor - Séminaire de Probabilités XLVII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2137))

Abstract

We investigate the problem of finding necessary and sufficient conditions for convergence in distribution towards a general finite linear combination of independent chi-squared random variables, within the framework of random objects living on a fixed Gaussian space. Using a recent representation of cumulants in terms of the Malliavin calculus operators \(\Gamma _{i}\) (introduced by Nourdin and Peccati, J. Appl. Funct. Anal. 258(11), 3775–3791, 2010), we provide conditions that apply to random variables living in a finite sum of Wiener chaoses. As an important by-product of our analysis, we shall derive a new proof and a new interpretation of a recent finding by Nourdin and Poly (Electron. Commun. Probab. 17(36), 1–12, 2012), concerning the limiting behavior of random variables living in a Wiener chaos of order two. Our analysis contributes to a fertile line of research, that originates from questions raised by Marc Yor, in the framework of limit theorems for non-linear functionals of Brownian local times.

MSC 2010: 60F05; 60G15; 60H07

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Biermé, A. Bonami, I. Nourdin, G. Peccati, Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants. ALEA Lat. Am. J. Probab. Math. Stat. 9(2), 473–500 (2012)

    MATH  MathSciNet  Google Scholar 

  2. A. Deya, I. Nourdin, Convergence of Wigner integrals to the tetilla law. ALEA Lat. Am. J. Probab. Math. Stat. 9, 101–127 (2012)

    MATH  MathSciNet  Google Scholar 

  3. P. Eichelsbacher, Ch. Thäle, Malliavin-Stein method for Variance-Gamma approximation on Wiener space. arXiv preprint arXiv:1409.5646, 2014

    Google Scholar 

  4. R.E. Gaunt, On Stein’s Method for products of normal random variables and zero bias couplings (2013), http://arxiv.org/abs/1309.4344

  5. S. Janson, Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, vol. 129 (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  6. I. Nourdin, A webpage about Stein’s method and Malliavin calculus. https://sites.google.com/site/malliavinstein/home

  7. I. Nourdin, G. Peccati, Noncentral convergence of multiple integrals. Ann. Probab. 37(4), 1412–1426 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Nourdin, G. Peccati, Stein’s method on Wiener chaos. Probab. Theory Relat. Fields. 145(1–2), 75–118 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. I. Nourdin, G. Peccati, Cumulants on the Wiener space. J. Appl. Funct. Anal. 258(11), 3775–3791 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Nourdin, G. Peccati, Normal Approximations Using Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  11. I. Nourdin, G. Poly, Convergence in law in the second Wiener/Wigner chaos. Electron. Commun. Probab. 17(36), 1–12 (2012)

    MathSciNet  Google Scholar 

  12. I. Nourdin, G. Poly, Convergence in total variation on Wiener chaos. Stoch. Process. Appl. 123(2), 651–674 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Nourdin, J. Rosinski, Asymptotic independence of multiple Wiener-Ito integrals and the resulting limit laws. Ann. Probab. 42(2), 497–526 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Nualart, The Malliavin Calculus and Related Topics. Probability and Its Application (Springer, Berlin, 2006)

    MATH  Google Scholar 

  15. D. Nualart, S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118(4), 614–628 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Nualart, G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 177–193 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Peccati, M.S. Taqqu, Wiener Chaos: Moments, Cumulants and Diagrams (Springer, New York, 2010)

    Google Scholar 

  18. G. Peccati, M. Yor, Hardy’s inequality in \(L^{2}\left (\left [0,1\right ]\right )\) and principal values of Brownian local times, in Asymptotic Methods in Stochastics. Fields Institute Communications Series (American Mathematical Society, Providence, 2004), pp. 49–74

    Google Scholar 

  19. G. Peccati, M. Yor, Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge, in Asymptotic Methods in Stochastics. Fields Institute Communication Series (American Mathematical Society, Providence, 2004), pp. 75–87

    Google Scholar 

  20. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  21. C.A. Tudor, Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach (Springer, Berlin, 2013)

    Book  Google Scholar 

Download references

Acknowledgements

We thank P. Eichelsbacher and Ch. Thäle for discussing with us, at a preliminary stage, the results contained in [3]. EA & GP were partially supported by the Grant F1R-MTH-PUL-12PAMP (PAMPAS) from Luxembourg University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Peccati .

Editor information

Editors and Affiliations

Appendix

Appendix

Lemma 6

Let \(\{a_{k}\}_{k\in \mathbb{N}}\) and \(\{b_{k}\}_{k\in \mathbb{N}}\) be two sequences in \(l^{1}(\mathbb{N})\) such that for all p ≥ 1 we have

$$\displaystyle{ \sum _{k\in \mathbb{N}}a_{k}^{p} =\sum _{ k\in \mathbb{N}}b_{k}^{p}. }$$
(43)

Then, there exists a permutation π on natural numbers \(\mathbb{N}\) such that a k = b π(k) for all k ≥ 1.

Proof

Let \(\mathbb{R}[X]\) denote the ring of all polynomials over real line. Then, relation (43) implies that for any polynomial \(P \in \mathbb{R}[X]\), we have

$$\displaystyle{ \sum _{k\in \mathbb{N}}a_{k}P(a_{k}) =\sum _{k\in \mathbb{N}}b_{k}P(b_{k}). }$$
(44)

Let \(M:=\max \{\Vert a\Vert _{l^{1}(\mathbb{N})},\Vert b\Vert _{l^{1}(\mathbb{N})}\} <\infty\). Then by a density argument, for any continuous function \(\varphi \in C([-M,M])\), we obtain

$$\displaystyle{ \sum _{k\in \mathbb{N}}a_{k}\varphi (a_{k}) =\sum _{k\in \mathbb{N}}b_{k}\varphi (b_{k}). }$$
(45)

For any \(i \in \mathbb{N}\), we can now choose a continuous function \(\varphi\) such that \(\varphi (a_{i}) = 1\) and \(\varphi = 0\) on the set \(\{a_{j}\vert a_{j}\neq a_{i}\} \cup \{ b_{j}\vert b_{j}\neq a_{i}\}\). This implies that, for some integer k i , we have \(a_{i} = b_{k_{i}}\). It is now sufficient to take π(i) = k i .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Azmoodeh, E., Peccati, G., Poly, G. (2015). Convergence Towards Linear Combinations of Chi-Squared Random Variables: A Malliavin-Based Approach. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) In Memoriam Marc Yor - Séminaire de Probabilités XLVII. Lecture Notes in Mathematics(), vol 2137. Springer, Cham. https://doi.org/10.1007/978-3-319-18585-9_16

Download citation

Publish with us

Policies and ethics