Skip to main content

Are Microcontinuum Field Theories of Elasticity Amenable to Experiments? A Review of Some Recent Results

  • Conference paper
  • First Online:
Differential Geometry and Continuum Mechanics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 137))

Abstract

It is well known that the material behavior at the micro- and even more at the nano-scale is size dependent, which is, for example, reflected in a stiffer elastic response. Thus modeling of micro- and nanoelectromechanical systems should be ready to incorporate size dependency as well. However, the classical Boltzmann continuum fails to reproduce the size effect. In this work special attention is paid to higher gradient theories such as the strain gradient theory (of Mindlin’s form-II), the modified strain gradient theory and the couple stress theory for linear elasticity. In particular, the latter will also be investigated in terms of finite elements. A confrontation to the Cosserat- or micropolar theory, the non-local continuum, the fractional calculus and the surface elasticity is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Physical linearity denotes a linear dependency of the stress measures on the strain measures.

References

  1. Bertram A (2005) Elasticity and plasticity of large deformations—an introduction. Springer, Berlin

    MATH  Google Scholar 

  2. Bertram A (2015) Finite gradient elasticity and plasticity: a constitutive thermodynamical framework. J Continuum Mech Thermodyn. doi:10.1007/s00161-015-0417-6

  3. Carpinteri A, Cornetti P, Kolwankar KM (2004) Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos, Solitons Fractals 21:623–632

    Article  MATH  Google Scholar 

  4. Chen Y, Lee JD, Eskandarian A (2004) Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int J Solids Struct 41:2085–2097

    Article  MATH  Google Scholar 

  5. Chong CM (2002) Experimental investigation and modeling of size effect in elasticity. Ph.D. thesis, Hong Kong University of Science and Technology

    Google Scholar 

  6. Cosserat E, Cosserat F (1909) Theorie des corps deformables. Hermann et Fils, Paris

    Google Scholar 

  7. Cuenot S, Demoustier-Champagne S, Nysten B (2000) Elastic modulus of polypyrrole nanotubes. Phys Rev Lett 85(8):1690–1693

    Article  Google Scholar 

  8. Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:01–05

    Article  Google Scholar 

  9. Eremeyev VA, Lebedev LP, Altenbach H (2013) Foundations of micropolar mechanics. Springer, Heidelberg

    Book  MATH  Google Scholar 

  10. Eringen AC (1966) A unified theory of thermomechanical materials. Int J Eng Sci 4:179–202

    Article  MathSciNet  MATH  Google Scholar 

  11. Eringen AC (1976) Continuum physics, vol. IV—polar and nonlocal field theories. Academic Press, New York

    Google Scholar 

  12. Eringen AC (1999) Microcontinuum field theories I: foundations and solids. Springer, New York

    Book  MATH  Google Scholar 

  13. Eringen AC (2010) Nonlocal continuum field theories. Springer, New York

    Google Scholar 

  14. Guo XH, Fang DN, Li XD (2005) Measurement of deformation of pure Ni foils by speckle pattern interferometry. Mech Eng 27(2):21–25

    Google Scholar 

  15. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    Google Scholar 

  16. Javili A, McBride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A Unifying Review. Appl Mech Rev 65(1):01–31

    Google Scholar 

  17. Ji B, Chen W (2010) A new analytical solution of pure bending beam in couple stress elasto-plasticity: theory and applications. Int J Solids Struct 47:779–785

    Article  MATH  Google Scholar 

  18. Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73:01–06

    Article  Google Scholar 

  19. Koiter WT (1964) Couple stresses in the theory of elasticity I and II. Proc Ned Akad Wet (B) 67(1):17–44

    MATH  Google Scholar 

  20. Lakes R (1995) In: Mhlhaus H (ed) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua, Chap. 1. Wiley, New York

    Google Scholar 

  21. Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  22. Li X-F, Wang B-L, Lee KY (2010) Size effect in the mechanical response of nanobeams. J Adv Res Mech Eng 1(1):04–16

    Google Scholar 

  23. Liebold C, Müller WH (2013) Measuring material coefficients of higher gradient elasticity by using AFM techniques and Raman-spectroscopy. In: Altenbach H, Forest S, Krivtsov A (eds) Generalized continua as models for materials, Advanced structured materials, vol 22, pp 255–271

    Google Scholar 

  24. Logg A, Mardal K-A, Wells GN et al (2012) Automated solution of differential equations by the finite element method. Springer. doi:10.1007/978-3-642-23099-8

  25. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060–1067

    Article  Google Scholar 

  26. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147

    Article  Google Scholar 

  27. Miller RE, Tadmor EB (2002) The quasicontinuum method: overview, applications and current directions. J Comput-Aided Mater Des 9:203–239

    Article  Google Scholar 

  28. Mindlin RD, Tiersten HF (1962) Effects of couple stresses in linear elasticity. Arch Ration Mech Anal 11:415–447

    Google Scholar 

  29. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    Article  MATH  Google Scholar 

  30. Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34(4):559–564

    Article  Google Scholar 

  31. Ramézani H, El-Hraiech A, Jeong J, Benhamou C-L (2012) Size effect method application for modeling of human cancellous bone using geometrically exact Cosserat elasticity. Comput Methods Appl Mech Eng 237–240:227–243

    Article  Google Scholar 

  32. Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  33. Sadeghian H, Yang CK, Goosen JFL, van der Drift E, Bossche A, French PJ, van Keulen F (2009) Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl Phys Lett 94:221903-01–221903-03

    Google Scholar 

  34. Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7(12):3691–3697

    Article  Google Scholar 

  35. Sumelka W (2013) Non-local continuum mechanics based on fractional calculus. In: 20th international conference on computer methods in mechanics, pp 05–08

    Google Scholar 

  36. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    Google Scholar 

  37. Truesdell C (1964) Die Entwicklung des Drallsatzes. Zeit Angew Math Mech 44(4/5):149–158

    Google Scholar 

  38. Truesdell C (1968) Whence the law of moment of momentum. In: Essays in the History of Mechanics. Springer, Berlin

    Google Scholar 

  39. Tsiatas GC (2009) A new Kirchhoff plate model based on a modified couple stress theory. Int J Solids Struct 46:2757–2764

    Article  MATH  Google Scholar 

  40. Vavva MG, Protopappas VC, Gergidis LN, Charalambopoulos A, Fotiadis DI, Polyzos D (2009) Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone. J Acoust Soc Am 125(5):3414–3427

    Article  Google Scholar 

  41. Vermaak JS, Mays W, Kuhlmann-Wilsdorf D (1968) On surface stress and surface tension. Surf Sci 12:128–133

    Article  Google Scholar 

  42. Yang F, Chong CM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Google Scholar 

  43. Yao H, Yun G, Bai N, Li J (2012) Surface elasticity effect on the size-dependent elastic property of nanowires. J Appl Phys 111:01–06

    Google Scholar 

Download references

Acknowledgments

The present work is supported by DFG MU 1752/33-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Liebold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Liebold, C., Müller, W.H. (2015). Are Microcontinuum Field Theories of Elasticity Amenable to Experiments? A Review of Some Recent Results. In: Chen, GQ., Grinfeld, M., Knops, R. (eds) Differential Geometry and Continuum Mechanics. Springer Proceedings in Mathematics & Statistics, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-18573-6_9

Download citation

Publish with us

Policies and ethics