Skip to main content

Ultrafast PMMA Superstructure Dynamics on Free-Standing Graphene

  • Chapter
  • First Online:
Development of an Ultrafast Low-Energy Electron Diffraction Setup

Part of the book series: Springer Theses ((Springer Theses))

  • 634 Accesses

Abstract

This chapter describes the time-resolved structural analysis of an ultrathin polymer overlayer adsorbed on free-standing graphene by the previously introduced transmission ULEED setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Vendor: Alfa Aesar, item No. 13382, purity: 99.8 %.

  2. 2.

    The pressure scale of the instrument is in Torr. Torr are converted into Pa by multiplication with \(101325/760\).

  3. 3.

    More information on Quantifoil on: http://www.quantifoil.com/.

  4. 4.

    Named PMMA\(_i\) and PMMA\(_{ii}\); vendor: Allresist (http://www.allresist.de/); tacticity: atactic; molecular weight: 950,000 g/mol; PDI: \(3.76\); melting temperature: \(130\)\(160\) \(^\circ \)C; glass transition temperature: \(105\) \(^\circ \)C; viscosity at \(25\) \(^\circ \)C: PMMA\(_i\) \(43.4\) mPas, PMMA\(_{ii}\) \(8.8\) mPas; solvent: PMMA\(_i\) solved in anisole, PMMA\(_{ii}\) solved in ethyl lactate. Since most of the measurements and especially all time-resolved experiments are performed with samples spincoated with PMMA\(_i\), it is referred to as simply “PMMA”, whereas the use of PC and PMMA\(_{ii}\) is specifically indicated.

  5. 5.

    Poly(propylene carbonate); vendor: Sigma-Aldrich (http://www.sigmaaldrich.com/); tacticity: atactic; molecular weight: 50,000 g/mol; glass temperature: \(25\)\(45\) \(^\circ \)C; molecular weight: \(102\) g/mol; solvent: ethyl acetate.

  6. 6.

    If not denoted otherwise, \(400\) mesh copper grid covered with a Quantifoil film of about \(10\) nm thickness and hole size of \(3.5\) \(\upmu \)m. Vendor: Plano (http://www.plano-em.de/).

  7. 7.

    Suppressor voltage optimized for homogeneous illumination of the whole sample area, lens voltage set to ground.

  8. 8.

    Mean-free path length for \(500\) eV electrons is of the order of \(1\) nm, whereas the Quantifoil thickness is about \(20\) nm, therefore not transmissive. Quantifoil coverage is about 50 % on an intact sample site. More information on this subject in Appendix B.

  9. 9.

    We gratefully acknowledge discussions with M. Müller, which contributed greatly in understanding this effect.

  10. 10.

    In the limit of an infinite lattice, \(k_s \rightarrow 0\), and the diverging behavior of the Debye-Waller factor is recovered.

References

  1. Gulde M, Schweda S, Storeck G, Maiti M, Yu HK, Wodtke AM, Schafer S, Ropers C (2014) Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science 345(6193):200–204. ISSN 0036-8075. http://www.sciencemag.org/cgi/doi/10.1126/science.1250658

  2. Rissanou AN, Harmandaris V (2013) Structure and dynamics of poly(methyl methacrylate)/graphene systems through atomistic molecular dynamics simulations. J Nanopart Res 15(5):1589. ISSN 1388-0764. http://link.springer.com/10.1007/s11051-013-1589-2

  3. Wang H, Strait JH, George PA, Shivaraman S, Shields VB, Chandrashekhar M, Hwang J, Rana F, Spencer MG, Ruiz-Vargas CS, Park J (2010) Ultrafast relaxation dynamics of hot optical phonons in graphene. Appl Phys Lett 96(8):081917. ISSN 00036951. http://scitation.aip.org/content/aip/journal/apl/96/8/10.1063/1.3291615

  4. Schäfer S, Liang W, Zewail AH (2011) Primary structural dynamics in graphite. New J Phys 13(6):063030. ISSN 1367-2630. http://stacks.iop.org/1367-2630/13/i=6/a=063030?key=crossref.1bb24b4813109185ed905889068d87de

  5. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425. ISSN 1476-4687. http://www.ncbi.nlm.nih.gov/pubmed/23887427

  6. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286. ISSN 1476-4687. http://www.ncbi.nlm.nih.gov/pubmed/16855586

  7. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35. ISSN 1530-6984. http://www.ncbi.nlm.nih.gov/pubmed/19046078

  8. Gass MH, Bangert U, Bleloch AL, Wang P, Nair RR, Geim AK (2008) Free-standing graphene at atomic resolution. Nature Nanotechnol 3(11):676–681. ISSN 1748-3395. http://www.ncbi.nlm.nih.gov/pubmed/18989334

  9. Lin YC, Lu CC, Yeh CH, Jin C (2012) Graphene annealing: how clean can it be? Nano Lett 12(1):414–419. http://pubs.acs.org/doi/abs/10.1021/nl203733r

  10. Miller DC, Kempe MD, Kennedy CE, Kurtz SR (2009) Analysis of transmitted optical spectrum enabling accelerated testing of CPV designs: preprint. Soc Phot Instrum Eng (SPIE). http://www.osti.gov/bridge/product.biblio.jsp?osti_id=962021

  11. Grubb DT (1974) Review radiation damage and electron microscopy of organic polymers. J Mater Sci 9(10):1715–1736. http://link.springer.com/article/10.1007/BF00540772

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. ISSN 1095-9203. http://www.ncbi.nlm.nih.gov/pubmed/15499015

  13. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314. ISSN 1095–9203. http://www.ncbi.nlm.nih.gov/pubmed/19423775

  14. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. ISSN 1520-6890. http://www.ncbi.nlm.nih.gov/pubmed/19610631

  15. Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006):946–948. ISSN 1095-9203. http://www.ncbi.nlm.nih.gov/pubmed/21071664

  16. Yazyev OV, Louie SG (2010) Topological defects in graphene: dislocations and grain boundaries. Phys Rev B 81(19):195420. ISSN 1098-0121. http://link.aps.org/doi/10.1103/PhysRevB.81.195420

  17. Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330):389–392. ISSN 1476-4687. http://www.ncbi.nlm.nih.gov/pubmed/21209615

  18. Henzler M, Göpel W (1994) Oberflächenphysik des Festkörpers, 2nd edn. B. G. Teubner, Stuttgart

    Google Scholar 

  19. Bormann R (2014) Development and characterization of an electron gun for ultrafast electron microscopes. PhD thesis (not yet published), University of Göttingen

    Google Scholar 

  20. Ha JS, Roh H-S, Jung S-D, Park S-J, Kim J-J, Lee E-H (1977) Structural study of a poly(methylmethacrylate) Langmuir-Blodgett film on a graphite surface by scanning tunneling microscope. J Vac Sci Technol B: Microelectron Nanometer Struct 12(3):1977. ISSN 0734211X. http://link.aip.org/link/?JVB/12/1977/1&Agg=doi

  21. Takanashi Y, Kumaki J (2013) Significant melting point depression of two-dimensional folded-chain crystals of Isotactic Poly(methyl methacrylate)s observed by high-resolution in situ atomic force microscopy. Phys Chem B 117(18):5594–5605. http://www.ncbi.nlm.nih.gov/pubmed/23614490

  22. Kumaki J, Kawauchi T, Yashima E (2005) Two-dimensional folded chain crystals of a synthetic polymer in a Langmuir-Blodgett film. J Am Chem Soc 127(16):5788–5789. ISSN 0002-7863. http://www.ncbi.nlm.nih.gov/pubmed/15839667

  23. Kim J-J, Jung S-D, Roh H-S, Ha J-S (1994) Molecular configuration of isotactic PMMA Langmuir-Blodgett films observed by scanning tunnelling microscopy. Thin Solid Films 244(1–2):700–704. ISSN 00406090. http://linkinghub.elsevier.com/retrieve/pii/0040609094905533

  24. Bassett DC, Frank FC, Keller A (1963) Some new habit features in crystals of long chain compounds part IV. the fold surface geometry of monolayer polyethylene crystals and its relevance to fold packing and crystal growth. Philos Mag 8(94):1753–1787. ISSN 0031-8086. http://www.tandfonline.com/doi/abs/10.1080/14786436308207335

  25. Kleber W, Bautsch H-J, Bohm J, Klimm D (2002) Einführung in die Kristallographie. Oldenbourg Wissenschaftsverlag, 18th edn. http://www.tandfonline.com/doi/pdf/10.1080/11035895809447264

  26. Schweda S (2013) Entwicklung eines Experiments zur zeitaufgelösten Beugung niederenergetischer Elektronen. Master thesis, Universität Göttingen, Göttingen

    Google Scholar 

  27. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. ISSN 1476-1122. http://www.nature.com/nmat/journal/v6/n3/abs/nmat1849.html

  28. Clarke LJ (1985) Surface crystallography: an introduction to low energy electron diffraction, 1st edn. Wiley, New York

    Google Scholar 

  29. Weishaupt K, Krbecek H, Pietralla M, Hochheimer HD, Mayr P (1995) Pressure dependence of the elastic constants of poly(methyl methacrylate). Polymer 36(17):3267–3271. http://www.sciencedirect.com/science/article/pii/003238619599424S

  30. E. Pop, V. Varshney, and A. K. Roy. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin, 37(12):1273–1281, November 2012. ISSN 0883–7694. URL http://www.journals.cambridge.org/abstract_S0883769412002035

  31. Stull DR, Prophet H (1971) Natl. Stand. Ref. Data Ser., volume 37. National Institute of Standards and Technology, 2nd edition, 1971. URL www.nist.gov/data/nsrds/NSRDS-NBS37.pdf

  32. Nair RR, Blake P, Grigorenko AN (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308. http://www.sciencemag.org/content/320/5881/1308.short

  33. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  34. Swartz E, Pohl R (1989) Thermal boundary resistance. Rev Mod Phys 61(3):605–668. ISSN 0034–6861. http://link.aps.org/doi/10.1103/RevModPhys.61.605

  35. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793. ISSN 00218979. http://scitation.aip.org/content/aip/journal/jap/93/2/10.1063/1.1524305

  36. Krenzer B, Hanisch-Blicharski A, Schneider P, Payer T, Möllenbeck S, Osmani O, Kammler M, Meyer R, Horn-von Hoegen M (2009) Phonon confinement effects in ultrathin epitaxial bismuth films on silicon studied by time-resolved electron diffraction. Phys Rev B 80(2):024307. ISSN 1098–0121. http://link.aps.org/doi/10.1103/PhysRevB.80.024307

  37. Hida S, Hori T, Shiga T, Elliott J, Shiomi J (2013) Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. Int J Heat Mass Transf 67:1024–1029. ISSN 0017–9310. http://www.sciencedirect.com/science/article/pii/S0017931013007308

  38. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2(11):731–734. ISSN 1476–1122. http://www.ncbi.nlm.nih.gov/pubmed/14556001

  39. Konatham D, Striolo A (2009) Thermal boundary resistance at the graphene-oil interface. Appl Phys Lett 95(16):163105. ISSN 00036951. http://scitation.aip.org/content/aip/journal/apl/95/16/10.1063/1.3251794

  40. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63. ISSN 1476–4687. http://www.ncbi.nlm.nih.gov/pubmed/17330039

  41. Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176(1):250–254. http://prola.aps.org/abstract/PR/v176/i1/p250_1

  42. Landau LD (1937) Zur Theorie der Phasenumwandlungen II. Phys. Z. Sowjetunion 26

    Google Scholar 

  43. Peierls R (1935) Quelques propriétés typiques des corps solides. Annales de l’Institut Henri Poincaré 3:177–222. https://eudml.org/doc/78996

  44. Tewary V, Yang B (2009) Singular behavior of the Debye-Waller factor of graphene. Phys Rev B 79(12):125416. ISSN 1098–0121. http://link.aps.org/doi/10.1103/PhysRevB.79.125416

  45. Shevitski B, Mecklenburg M, Hubbard W, White E, Dawson B, Lodge M, Ishigami M, Regan B (2013) Dark-field transmission electron microscopy and the Debye-Waller factor of graphene. Phys Rev B 87(4):045417. ISSN 1098–0121. http://link.aps.org/doi/10.1103/PhysRevB.87.045417

  46. Park H, Zuo J-M (2009) Direct measurement of transient electric fields induced by ultrafast pulsed laser irradiation of silicon. Appl Phys Lett 94(25):251103. ISSN 00036951. http://link.aip.org/link/APPLAB/v94/i25/p251103/s1&Agg=doi

  47. Lui CH, Mak KF, Shan J, Heinz TF (2010) Ultrafast photoluminescence from graphene. Phys Rev Lett 105(12):127404. ISSN 0031–9007. http://link.aps.org/doi/10.1103/PhysRevLett.105.127404

  48. Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase transitions in two-dimensional systems. J Phys C: Solid State Phys 6(7):1181–1203. ISSN 0022–3719. http://stacks.iop.org/0022-3719/6/i=7/a=010?key=crossref.f2d443370878b9288c142e398ad429b1

  49. Nelson DR, Halperin BI (1979) Dislocation-mediated melting in two dimensions. Phys Rev B 19(5):2457–2484. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.19.2457

  50. Specht ED, Sutton M, Birgeneau RJ, Moncton DE, Horn PM (1984) Phase diagram and phase transitions of krypton on graphite in the one-to-two-layer regime. Phys Rev B 30(3):1589–1592. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.30.1589

  51. Schuster R, Barth JV, Ertl G, Behm RJ (1992) Scanning tunneling microscopy observation of phase-transition phenomena in the Cs/Cu (110) system: evidence for a two-step disordering mechanism of a uniaxial (1x3) phase. Phys Rev Lett 69(17):2547–2553. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.69.2547

  52. Yen R, Liu JM, Kurz H, Bloembergen N (1982) Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers. Appl Phys A Solids Surf 27(3):153–160. ISSN 0721–7250. http://link.springer.com/10.1007/BF00616666

  53. Wortman JJ, Evans RA (1965) Young’s modulus, Shear modulus, and Poisson’s ratio in silicon and germanium. J Appl Phys 36(1):153. ISSN 00218979. http://scitation.aip.org/content/aip/journal/jap/36/1/10.1063/1.1713863

  54. Andrä G, Geiler HD, Götz G (1982) Explosive liquid-phase crystallization of thin silicon films during pulse heating. Phys Status Solidi (a), 74(2):511–515. http://onlinelibrary.wiley.com/doi/10.1002/pssa.2210740217/abstract

  55. Rissanou AN, Harmandaris V (2013) A molecular dynamics study of polymer/graphene nanocomposites. Macromol Symp 331–332(1):43–49. ISSN 10221360. http://doi.wiley.com/10.1002/masy.201300070

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gulde .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gulde, M. (2015). Ultrafast PMMA Superstructure Dynamics on Free-Standing Graphene. In: Development of an Ultrafast Low-Energy Electron Diffraction Setup. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18561-3_6

Download citation

Publish with us

Policies and ethics