Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 641 Accesses

Abstract

In this chapter, the potential of ultrafast LEED for investigations with atomic-scale resolution is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a more general definition as used in Ref. [79], the coherence is a measure for the correlation between quantities of an optical field.

  2. 2.

    \((\beta \gamma )^2 \approx 2\cdot 10^{-6} U\).

References

  1. DeMaria AJ, Glenn WH, Brienza MJ, Mack ME (1969) Picosecond laser pulses. Proc IEEE 57(1):2–25. ISSN 0018-9219. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1448794

  2. Rentzepis PM (1970) Ultrafast processes. Science 169(3942):239–247. http://www.sciencemag.org/content/169/3942/239.short

  3. Fleming GR, Morris JM, Robinson GW (1976) Direct observation of rotational diffusion by picosecond spectroscopy. Chem Phys 17(1):91–100. http://www.sciencedirect.com/science/article/pii/0301010476850094

  4. Ischenko AA, Golubkov VV, Spiridonov VP, Zgurskii AV, Akhmanov AS, Vabischevich MG, Bagratashvili VN (1983) A stroboscopical gas-electron diffraction method for the investigation of short-lived molecular species. Appl Phys B 32(3):161–163. ISSN 0721-7269. http://link.springer.com/10.1007/BF00688823

  5. Becker RS, Higashi GS, Golovchenko JA (1984) Low-energy electron diffraction during pulsed laser annealing: a time-resolved diffraction study. Phys Rev Lett 52(4):307–310. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.52.307

  6. Williamson S, Mourou G, Li JCM (1984) Time-resolved laser-induced phase transformation in aluminum. Phys Rev Lett 52(26):2364–2367. http://prl.aps.org/abstract/PRL/v52/i26/p2364_1

  7. Erkal Y, Turfan EÇ, Sert E, Mermer G (2013) The potential of the dynamic transmission electron microscope (DTEM) for in situ microscopy. Technical report, Faculty of Health Sciences, Konya. http://posteranmeldung.de/tl_files/vortraege/OralPresentations/Oral12Erkal.pdf

  8. Shorokhov D, Zewail AH (2008) 4D electron imaging: principles and perspectives. Phys Chem Chem Phys 10(20):2879–2893. ISSN 1463-9076. http://www.ncbi.nlm.nih.gov/pubmed/18473037

  9. Siwick BJ, Dwyer JR, Jordan RE, Miller RJD (2003) An atomic-level view of melting using femtosecond electron diffraction. Science 302(5649):1382–1385. ISSN 1095-9203. http://www.ncbi.nlm.nih.gov/pubmed/14631036

  10. Stolow A, Bragg AE, Neumark DM (2004) Femtosecond time-resolved photoelectron spectroscopy. Chem Rev 104(4):1719–1757. ISSN 0009-2665. http://www.ncbi.nlm.nih.gov/pubmed/15080710

  11. Schmitt F, Kirchmann PS, Bovensiepen U, Moore RG, Rettig L, Krenz M, Chu J-H, Ru N, Perfetti L, Lu DH, Wolf M, Fisher IR, Shen ZX (2009) Transient electronic structure and melting of a charge density wave in TbTe3. Science 321(5896):1649–1652. ISSN 1095-9203. http://www.ncbi.nlm.nih.gov/pubmed/18703710

  12. Perfetti L, Loukakos PA, Lisowski M, Bovensiepen U, Eisaki H, Wolf M (2007) Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+\(\delta \) by time-resolved photoelectron spectroscopy. Phys Rev Lett 99(19):197001. ISSN 0031-9007. http://link.aps.org/doi/10.1103/PhysRevLett.99.197001

  13. van Bokhoven JA, Louis C, Miller JT, Tromp M, Safonova OV, Glatzel P (2006) Activation of oxygen on gold/alumina catalysts. in situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy. Angewandte Chemie 118(28):4767–4770. ISSN 0044-8249. http://doi.wiley.com/10.1002/ange.200601184

  14. Johnson S, Vorobeva E, Beaud P, Milne C, Ingold G (2009) Full reconstruction of a crystal unit cell structure during coherent femtosecond motion. Phys Rev Lett 103(20):205501. ISSN 0031-9007. http://link.aps.org/doi/10.1103/PhysRevLett.103.205501

  15. Fritz DM, Reis DA, Adams B, Akre RA, Arthur J, Blome C, Bucksbaum PH, Cavalieri AL, Engemann S, Fahy S, Falcone RW, Fuoss PH, Gaffney KJ, George MJ, Hajdu J, M. P. Hertlein MP, Hillyard PB, Horn-von Hoegen M, Kammler M, Kaspar J, Kienberger R, Krejcik P, Lee SH, Lindenberg AM, McFarland B, MeyerD, Montagne T, Murray ED, Nelson AJ, Nicoul M, Pahl R, Rudati J, Schlarb H, Siddons DP, Sokolowski-Tinten K, Tschentscher T, von der Linde D, Hastings JB (2007) Ultrafast bond softening in bismuth: mapping a solid’s interatomic potential with X-rays. Science 315(5812):633–636. ISSN 1095-9203. http://www.ncbi.nlm.nih.gov/pubmed/17272718

  16. Sokolowski-Tinten K, Blome C, Blums J, Cavalleri A, Dietrich Cl, Tarasevitch Al, Uschmann I, Förster E, Kammler M, Horn-von Hoegen M, von der Linde D (2003) Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422(6929):287–289. ISSN 0028-0836. http://www.ncbi.nlm.nih.gov/pubmed/12646915

  17. Gao M, Lu C, Jean-Ruel H, Liu LC, Marx A, Onda K, Koshihara S-Y, Nakano Y, Shao X, Hiramatsu T, Saito G, Yamochi H, Cooney RR, Moriena G, Sciaini G, Miller RJD (2013) Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496(7445):343–6. ISSN 1476-4687. http://www.ncbi.nlm.nih.gov/pubmed/23598343

  18. Eichberger M, Krumova M, Beyer M, Demsar J, Berger H, Moriena G, Sciaini G, Miller RJD (2010) Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468(7325):799–802. ISSN 1476-4687. http://www.ncbi.nlm.nih.gov/pubmed/21107321

  19. Zewail AH (2010) Four-dimensional electron microscopy. Science 328(5975):187–93. ISSN 1095-9203. http://www.ncbi.nlm.nih.gov/pubmed/20378810

  20. LaGrange T, Campbell GH, Reed BW, Taheri M, Pesavento JB, Kim JS, Browning ND (2008) Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 108(11):1441–1449. ISSN 0304-3991. http://www.ncbi.nlm.nih.gov/pubmed/18783886

  21. Cocker TL, Jelic V, Gupta M, Molesky SJ, Burgess JAJ, Reyes GDL, Titova LV, Tsui YY, Freeman MR, Hegmann FA (2013) An ultrafast terahertz scanning tunnelling microscope. Nat Photon 7(8):620–625. ISSN 1749-4885. http://www.nature.com/doifinder/10.1038/nphoton.2013.151

  22. Reed BW, Armstrong MR, Browning ND, Campbell GH, Evans JE, LaGrange T, Masiel DJ (2009) The evolution of ultrafast electron microscope instrumentation. Microsc Microanal 15(4):272–281. ISSN 1435-8115. http://www.ncbi.nlm.nih.gov/pubmed/19575828

  23. Schäfer S, Liang W, Zewail AH (2011) Structural dynamics of nanoscale gold by ultrafast electron crystallography. Chem Phys Lett 515(4–6):278–282. ISSN 00092614. http://linkinghub.elsevier.com/retrieve/pii/S0009261411011699

  24. Nicoul M, Shymanovich U, Tarasevitch A, von der Linde D, Sokolowski-Tinten K (2011) Picosecond acoustic response of a laser-heated gold-film studied with time-resolved x-ray diffraction. Appl Phys Lett 98(19):191902. ISSN 00036951. http://scitation.aip.org/content/aip/journal/apl/98/19/10.1063/1.3584864

  25. Hanisch-Blicharski A, Janzen A, Krenzer B, Wall S, Klasing F, Kalus A, Frigge T, Kammler M, Horn-von Hoegen M (2013) Ultra-fast electron diffraction at surfaces: from nanoscale heat transport to driven phase transitions. Ultramicroscopy, 127:2–8. ISSN 1879-2723. http://www.ncbi.nlm.nih.gov/pubmed/22975358

  26. Krenzer B, Hanisch-Blicharski A, Schneider P, Payer T, Möllenbeck S, Osmani O, Kammler M, Meyer R, Horn-von Hoegen M (2009) Phonon confinement effects in ultrathin epitaxial bismuth films on silicon studied by time-resolved electron diffraction. Phys Rev B 80(2):024307. ISSN 1098-0121. http://link.aps.org/doi/10.1103/PhysRevB.80.024307

  27. Liang W, Schäfer S, Zewail AH (2012) Ultrafast electron crystallography of monolayer adsorbates on clean surfaces: structural dynamics. Chem Phys Lett 542:1–7. ISSN 00092614. http://www.sciencedirect.com/science/article/pii/S0009261412006501

  28. Dahmen U, Hagege S, Faudot F (2004) Observations of interface premelting at grain-boundary precipitates of Pb in Al. Philos Maga 84(25–26). http://www.tandfonline.com/doi/abs/10.1080/14786430410001671403

  29. Ernstorfer R, Harb M, Hebeisen CT, Sciaini G, Dartigalongue T, Miller RJD (2009) The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323(5917):1033–1037. ISSN 1095-9203. http://www.ncbi.nlm.nih.gov/pubmed/19164708

  30. Gao M, Jean-Ruel H, Cooney RR (2012) Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. Optics Exp 20(11):799–802. http://www.opticsinfobase.org/abstract.cfm?uri=oe-20-11-12048

  31. Sciaini G, Miller RJD (2011) Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep Progr Phys 74(9):096101. ISSN 0034-4885. http://stacks.iop.org/0034-4885/74/i=9/a=096101?key=crossref.5cf8eb1cb398a8048108bdb5d3ce79e3

  32. Baum P (2013) On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction. Chem Phys 423:55–61. ISSN 03010104. http://linkinghub.elsevier.com/retrieve/pii/S0301010413002681

  33. Zhou P, Streubühr C, Kalus A, Frigge T, Wall S, Hanisch-Blicharski A, Kammler M, Ligges M, Bovensiepen U, von der Linde D, Horn-von Hoegen M (2013) Ultrafast time resolved reflection high energy electron diffraction with tilted pump pulse fronts. EPJ Web Conf 41:10016. ISSN 2100-014X. http://www.epj-conferences.org/10.1051/epjconf/20134110016

  34. Baum P, Yang D-S, Zewail AH (2007) 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318(5851):788–792. ISSN 1095-9203. http://www.ncbi.nlm.nih.gov/pubmed/17975063

  35. Siwick BJ, Dwyer JR, Jordan RE, Miller RJD (2002) Ultrafast electron optics: propagation dynamics of femtosecond electron packets. J Appl Phys, 92(3):1643. ISSN 00218979. http://link.aip.org/link/JAPIAU/v92/i3/p1643/s1&Agg=doi

  36. Cirelli C, Hengsberger M, Dolocan A, Over H, Osterwalder J, Greber T (2009) Direct observation of space charge dynamics by picosecond low-energy electron scattering. EPL (Europhysics Letters) 85(1):17010. ISSN 0295-5075. http://stacks.iop.org/0295-5075/85/i=1/a=17010?key=crossref.0ada5732e7a0a20a3c25f58fd3693781

  37. Karrer R, Neff HJ, Hengsberger M, Greber T, Osterwalder J (2001) Design of a miniature picosecond low-energy electron gun for time-resolved scattering experiments. Rev Sci Instr, 72(12):4404. ISSN 00346748. http://link.aip.org/link/RSINAK/v72/i12/p4404/s1&Agg=doi

  38. Janzen A, Krenzer B, Heinz O, Zhou P, Thien D, Hanisch A, Meyer FJ, Heringdorf Z, von der Linde D, Horn von Hoegen M (2007) A pulsed electron gun for ultrafast electron diffraction at surfaces. Rev Sci Instr 78(1):013906. ISSN 0034-6748. http://www.ncbi.nlm.nih.gov/pubmed/17503932

  39. Krüger M, Schenk M, Hommelhoff P (2011) Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475(7354):78–81. ISSN 1476-4687. http://www.ncbi.nlm.nih.gov/pubmed/21734706

  40. Herink G, Solli DR, Gulde M, Ropers C (2012) Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483(7388):190–193. ISSN 00280836. http://www.nature.com/doifinder/10.1038/nature10878

  41. Paarmann A, Gulde M, Müller M, Schäfer S, Schweda S, Maiti M, Xu C, Hohage T, Schenk F, Ropers C, Ernstorfer R (2012) Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: a numerical study. J Appl Phys 112(11):113109. ISSN 00218979. http://link.aip.org/link/JAPIAU/v112/i11/p113109/s1&Agg=doi

  42. Quinonez E, Handali J, Barwick B (2013) Femtosecond photoelectron point projection microscope. Rev Sci Instr, 84(10):103710. ISSN 1089-7623. http://www.ncbi.nlm.nih.gov/pubmed/24182122

  43. Spence JCH, Vecchione T, Weierstall U (2010) A coherent photofield electron source for fast diffractive and point-projection imaging. Philos Mag 90(35–36):4691–4702. ISSN 1478-6435. http://www.tandfonline.com/doi/abs/10.1080/14786431003630868

  44. Barwick B, Corder C, Strohaber J, Chandler-Smith N, Uiterwaal C, Batelaan H (2007) Laser-induced ultrafast electron emission from a field emission tip. New J Phys 9(142). ISSN 1367-2630. http://stacks.iop.org/1367-2630/9/i=5/a=142?key=crossref.e808ef6132af32ab20f4702ea27e5178

  45. Nörenberg H, Säverin R, Hoppe U, Holzhüter G (1999) Estimation of radial distribution functions in electron diffraction experiments: physical, mathematical and numerical aspects. J Appl Crystallogr 32(5):911–916. ISSN 00218898. http://scripts.iucr.org/cgi-bin/paper?S0021889899006603

  46. King WE, Campbell GH, Frank A, Reed B, Schmerge JF, Siwick BJ, Stuart BC, Weber PM (2005) Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97(11):111101. ISSN 00218979. http://link.aip.org/link/JAPIAU/v97/i11/p111101/s1&Agg=doi

  47. LaGrange T, Armstrong MR, Boyden K, Brown CG, Campbell GH, Colvin JD, DeHope WJ, Frank AM, Gibson DJ, Hartemann FV, Kim JS, King WE, Pyke BJ, Reed BW, Shirk MD, Shuttlesworth RM, Stuart BC, Torralva BR, Browning ND (2006) Single-shot dynamic transmission electron microscopy. Appl Phys Lett 89(4):044105. ISSN 00036951. http://link.aip.org/link/APPLAB/v89/i4/p044105/s1&Agg=doi

  48. Dehm G, Howe JM, Zweck J (2012) In-situ electron microscopy: applications in physics, chemistry and materials science, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA,Weinheim

    Google Scholar 

  49. Musumeci P, Moody JT, Scoby CM, Gutierrez MS, Bender HA, Wilcox NS (2010) High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector. Rev Sci Instr 81(1):013306. ISSN 1089-7623. http://www.ncbi.nlm.nih.gov/pubmed/20113092

  50. Mancini GF, Mansart B, Pagano S, van der Geer B, de Loos M, Carbone F (2012) Design and implementation of a flexible beamline for fs electron diffraction experiments. Nucl Instr Methods Phys Res Sect A 691:113–122. ISSN 01689002. http://linkinghub.elsevier.com/retrieve/pii/S0168900212007334

  51. Musumeci P, Moody JT, Scoby CM, Gutierrez MS, Westfall M (2010) Laser-induced melting of a single crystal gold sample by time-resolved ultrafast relativistic electron diffraction. Appl Phys Lett 97(6):063502. ISSN 00036951. http://link.aip.org/link/APPLAB/v97/i6/p063502/s1&Agg=doi

  52. Yang J, Naruse N, Kan K (2012) Femtosecond electron guns for ultrafast electron diffraction. IPAC Proc 4170–4174. https://accelconf.web.cern.ch/accelconf/IPAC2012/papers/frxbb01.pdf

  53. Hastings JB, Rudakov FM, Dowell DH, Schmerge JF, Cardoza JD, Castro JM, Gierman S-M, Loos H, Weber PM (2006) Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl Phys Lett 89(18):184109. ISSN 00036951. http://link.aip.org/link/APPLAB/v89/i18/p184109/s1&Agg=doi

  54. Williamson JC, Dantus M, Kim SB, Zewail AH (1992) Ultrafast diffraction and molecular structure. Chem Phys Lett 196(6):529–534. http://www.sciencedirect.com/science/article/pii/000926149285988M

  55. Zewail A (2010) 4D electron microscopy: imaging in space and time, 1st edn. World Scientific Publishing Co., Pte. Ltd., Singapore

    Google Scholar 

  56. Haine ME, Einstein PA (1952) Characteristics of the hot cathode electron microscope gun. Br J Appl Phys 3(2):40–46. http://iopscience.iop.org/0508-3443/3/2/302

  57. Williams DB, Carter CB, Barry C (2009) Transmission electron microscopy: a textbook for materials science, 2nd edn. Springer, Berlin

    Google Scholar 

  58. Murphy EL, Good RH Jr (1956) Thermionic emission, field emission, and the transition region. Phys Rev 102(6):1464–1473. http://prola.aps.org/abstract/PR/v102/i6/p1464_1

  59. Dowell DH, Schmerge JF (2009) Quantum efficiency and thermal emittance of metal photocathodes. Phys Rev Special Topics Accel Beams 12(7):074201. ISSN 1098-4402. http://link.aps.org/doi/10.1103/PhysRevSTAB.12.074201

  60. Bouhelier A, Beversluis M, Hartschuh A, Novotny L (2003) Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett 90(1):013903. ISSN 0031-9007. http://link.aps.org/doi/10.1103/PhysRevLett.90.013903

  61. Novotny L, Bian RX, Xie XS (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79(4):645–648. ISSN 0031-9007. http://link.aps.org/doi/10.1103/PhysRevLett.79.645

  62. Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced Raman scattering. J Chem Phys 76(1):751. ISSN 00219606. http://scitation.aip.org/content/aip/journal/jcp/76/1/10.1063/1.442690

  63. Gomer R (1961) Field emission and field ionization, 1st edn. Havard University Press, Cambridge

    Google Scholar 

  64. Beckey HD, Krone H, Roellgen FW (1968) Comparison of tips, thin wires and sharp metal edges as emitters for field ionization mass spectrometry. J Phys E 118. http://iopscience.iop.org/0022-3735/1/2/308

  65. Orloff J (2008) Handbook of charged particle optics, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  66. Berger JA, Hogan JT, Greco MJ, Schroeder WA, Nicholls AW, Browning ND (2009) DC photoelectron gun parameters for ultrafast electron microscopy. Microsc Microanal 15(4):298–313. ISSN 1435-8115. http://www.ncbi.nlm.nih.gov/pubmed/19575831

  67. Aeschlimann M, Hull E (1995) A picosecond electron gun for surface analysis. Rev Sci Instr 66:1000–1009. http://scitation.aip.org/content/aip/journal/rsi/66/2/10.1063/1.1146036

  68. Gahlmann A, Tae Park S, Zewail AH (2009) Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions. Phys Chem Chem Phys 10(20):2894–909. ISSN 1463-9076. http://www.ncbi.nlm.nih.gov/pubmed/18473038

  69. Merano M, Collin S, Renucci P, Gatri M, Sonderegger S, Crottini A, Ganière JD, Deveaud B (2005) High brightness picosecond electron gun. Rev Sci Instr 76(8):085108. ISSN 00346748. http://scitation.aip.org/content/aip/journal/rsi/76/8/10.1063/1.2008975

  70. Bormann R, Gulde M, Weismann A, Yalunin S, Ropers C (2010) Tip-enhanced strong-field photoemission. Phys Rev Lett 105(14):147601. ISSN 00319007. http://link.aps.org/doi/10.1103/PhysRevLett.105.147601

  71. Hommelhoff P, Kealhofer C, Aghajani-Talesh A, Sortais YRP, Foreman SM, Kasevich MA (2009) Extreme localization of electrons in space and time. Ultramicroscopy 109(5):423–429. ISSN 0304-3991. http://www.ncbi.nlm.nih.gov/pubmed/19117677

  72. Behr N, Raschke MB (2008) Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement. J Phys Chem C 112(10):3766–3773. ISSN 1932-7447. http://pubs.acs.org/doi/abs/10.1021/jp7098009

  73. Irvine S, Dechant A, Elezzabi A (2004) Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys Rev Lett 93(18):184801. ISSN 0031-9007. http://link.aps.org/doi/10.1103/PhysRevLett.93.184801

  74. Hommelhoff P, Sortais Y, Aghajani-Talesh A, Kasevich MA (2006) Field emission tip as a nanometer source of free electron femtosecond pulses. Phys Rev Lett 96(7):077401. ISSN 0031-9007. http://link.aps.org/doi/10.1103/PhysRevLett.96.077401

  75. Ropers C (2007) Femtosecond excitations in metallic nanostructures. Phd thesis, Humboldt-Universität zu Berlin. http://edoc.hu-berlin.de/dissertationen/ropers-claus-2007-07-11/METADATA/abstract.php?id=28147

  76. Reiss HR (1980) Effect of an intense electromagnetic field on a weakly bound system. Phys Rev A 22(5):1786–1813. http://pra.aps.org/abstract/PRA/v22/i5/p1786_1

  77. Yalunin SV, Herink G, Solli DR, Krüger M, Hommelhoff P, Diehn M, Munk A, Ropers C (2013) Field localization and rescattering in tip-enhanced photoemission. Annalen der Physik 525(1–2):L12–L18. ISSN 00033804. http://doi.wiley.com/10.1002/andp.201200224

  78. Yalunin SV, Gulde M, Ropers C (2011) Strong-field photoemission from surfaces: theoretical approaches. Phys Rev B 84(19):1–14. ISSN 10980121. http://link.aps.org/doi/10.1103/PhysRevB.84.195426

  79. Lauterborn W, Kurz T (2003) Coherent optics: fundamentals and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  80. Michalik AM, Sherman EY, Sipe JE (2008) Theory of ultrafast electron diffraction: the role of the electron bunch properties. J Appl Phys 104(5):054905. ISSN 00218979. http://scitation.aip.org/content/aip/journal/jap/104/5/10.1063/1.2973157

  81. Demtröder W (2013) Experimentalphysik 2—Elektrizität und Optik, 6th edn. Springer, Berlin

    Google Scholar 

  82. Van Hove MA, Weinberg WH, Chan CM (1986) Low-energy electron diffraction, 1st edn. Springer, Berlin

    Google Scholar 

  83. Reiser M (2008) Theory and design of charged particle beams, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  84. Strauch S (2013) Tip-based photoelectron sources for ultrafast transmission electron microscopy. Master thesis, Universität Göttingen, Göttingen

    Google Scholar 

  85. Gordillo MC, Marti J (2010) Water on graphene surfaces. J Phys: Condens Matter 22(28):284111. ISSN 1361-648X. http://www.ncbi.nlm.nih.gov/pubmed/21399283

  86. Kwon O-H, Barwick B (2008) 4D visualization of embryonic, structural crystallization by single-pulse microscopy. Proc Natl Acad Sci USA 105(25):8519–8524. http://www.pnas.org/content/105/25/8519.short

  87. Schweda S (2013) Entwicklung eines Experiments zur zeitaufgelösten Beugung niederenergetischer Elektronen. Master thesis, Universität Göttingen, Göttingen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Gulde .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gulde, M. (2015). Aspects of Ultrafast LEED. In: Development of an Ultrafast Low-Energy Electron Diffraction Setup. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18561-3_3

Download citation

Publish with us

Policies and ethics