Skip to main content

Nanomaterials for Ink-Jet Printed Electronics

  • Conference paper

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 167))

Abstract

One of the new and important fields of functional printing application is electronics. Among modern products of printed electronics, we find flexible batteries, polymer solar cells, RFID tags, flexible displays, and sensors. For the fabrication of conductive tracks, coatings, and contacts, nanoparticles are of high interest since the processing temperature, as well as the melting point is size dependent. Ink-jet technique is attractive since it allows additively and precisely to fabricate conductive patterns on different substrates—paper, plastics, ceramics, and composites. This method can essentially reduce wastes and is compatible with roll-to-roll technology. Our brief review covers milestones of material and ink formation methods development for the ink-jet printing technology in electronics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lesyuk R, Bobitski Y, Jillek W (2008) Fabrication of VHF-radio receiver with ink-jet printed circuit board using silver nano particles. In: Proceedings of IV international conference “electronics and applied physics”, Kyiv, 23–25 Oct 2008, pp 46–47

    Google Scholar 

  2. Kim H-S et al (2009) Intense pulsed light sintering of copper nanoink for printed electronics. Appl Phys A 97(4):791–798

    Article  ADS  Google Scholar 

  3. Moscicki A et al (2005) Electrically conductive formulations filled nano size silver filler for ink-jet technology. In IEEE fifth international conference on polymers and adhesives in microelectronics and photonics, polytronic, 2005

    Google Scholar 

  4. Fuller SB, Wilhelm EJ, Jacobson JM (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11(1):54–60

    Article  Google Scholar 

  5. Volkman SK et al (2004) Ink-jetted silver/copper conductors for printed RFID applications. In: Materials research society symposium proceedings. Cambridge University Press, Cambridge

    Google Scholar 

  6. Redinger D et al (2004) An ink-jet-deposited passive component process for RFID. IEEE Trans Electron Devices 51(12):1978–1983

    Article  ADS  Google Scholar 

  7. Kamyshny A et al (2005) Ink-Jet printing of metallic nanoparticles and microemulsions. Macromol Rapid Commun 26(4):281–288

    Article  Google Scholar 

  8. Kurihara L, Chow G, Schoen P (1995) Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater 5(6):607–613

    Article  Google Scholar 

  9. Wiley B et al (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4(9):1733–1739

    Article  ADS  Google Scholar 

  10. Kim D, Moon J (2005) Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem Solid-State Lett 8(11):J30–J33

    Article  Google Scholar 

  11. Park BK et al (2007) Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515(19):7706–7711

    Article  ADS  MATH  Google Scholar 

  12. Lee H-H, Chou K-S, Huang K-C (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16(10):2436

    Article  ADS  Google Scholar 

  13. Yi S-M et al (2008) Effect of microstructure on electrical and mechanical properties: impurities of inkjet-printed Ag and Cu interconnects. In IEEE 58th electronic components and technology conference, 2008. ECTC 2008

    Google Scholar 

  14. Hong CM, Wagner S (2000) Inkjet printed copper source/drain metallization for amorphous silicon thin-film transistors. IEEE Electron Device Letters 21(8):384–386

    Article  ADS  Google Scholar 

  15. Lee Y et al (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19(41):415604

    Article  ADS  Google Scholar 

  16. Kang JS et al (2010) Inkjet printed electronics using copper nanoparticle ink. J Mater Sci Mater Electron 21(11):1213–1220

    Article  Google Scholar 

  17. Yung K, Plura T (2010) Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles. Appl Phys A 101(2):393–397

    Article  ADS  Google Scholar 

  18. Khan A et al (2012) Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process. J Mater Process Technol 212(3):700–706

    Article  MATH  Google Scholar 

  19. http://www.novacentrix.com/products/metalon-inks/copper

  20. Marjanovic N et al (2011) Inkjet printing and low temperature sintering of CuO and CdS as functional electronic layers and Schottky diodes. J Mater Chem 21(35):13634–13639

    Article  Google Scholar 

  21. Wuelfing WP et al (1998) Nanometer gold clusters protected by surface-bound monolayers of thiolated poly (ethylene glycol) polymer electrolyte. J Am Chem Soc 120(48):12696–12697

    Article  Google Scholar 

  22. Hostetler MJ, Green SJ, Stokes JJ, Murray RW (1996) Monolayers in three dimensions: synthesis and electrochemistry of omega-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc 118:4212–4213

    Article  Google Scholar 

  23. Badia A et al (1996) Structure and chain dynamics of alkanethiol-capped gold colloids. Langmuir 12(5):1262–1269

    Article  Google Scholar 

  24. Hostetler MJ et al (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30

    Article  Google Scholar 

  25. Leff DV et al (1995) Thermodynamic control of gold nanocrystal size: experiment and theory. J Phys Chem 99(18):7036–7041

    Article  Google Scholar 

  26. Bieri N et al (2003) Microstructuring by printing and laser curing of nanoparticle solutions. Appl Phys Lett 82(20):3529–3531

    Article  ADS  Google Scholar 

  27. Chung J et al (2004) Conductor microstructures by laser curing of printed gold nanoparticle ink. Appl Phys Lett 84(5):801–803

    Article  ADS  Google Scholar 

  28. Chung J et al (2004) In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Appl Phys A 79(4-6):1259–1261

    Article  ADS  Google Scholar 

  29. Choi TY, Poulikakos D, Grigoropoulos CP (2004) Fountain-pen-based laser microstructuring with gold nanoparticle inks. Appl Phys Lett 85(1):13–15

    Article  ADS  Google Scholar 

  30. Chung J et al (2005) Damage-free low temperature pulsed laser printing of gold nanoinks on polymers. J Heat Transf 127(7):724–732

    Article  Google Scholar 

  31. Ko S et al (2005) Fabrication of inkjet printed flexible electronics by low temperature subtractive laser processing. In: Proceedings of the IMECE, Orlando, FL, Nov 2005, pp 5–10

    Google Scholar 

  32. Ko SH et al (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18(34):345202

    Article  ADS  Google Scholar 

  33. Saito H, Matsuba Y (2006) Liquid wiring technology by ink-jet printing using NanoPaste. In: 35th international symposium on microelectronics IMAPS, San Diego

    Google Scholar 

  34. Radivojevic Z et al (2007) Optimised curing of silver ink jet based printed traces. arXiv preprint arXiv:0709.1842

    Google Scholar 

  35. Murata K et al (2005) Super-fine ink-jet printing: toward the minimal manufacturing system. Microsyst Technol 12(1-2):2–7

    Article  Google Scholar 

  36. Felba J, Schaefer H (2009) Materials and technology for conductive microstructures. In: Nanopackaging. Springer, New York, pp 239-263

    Google Scholar 

  37. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133

    Article  Google Scholar 

  38. Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29(5):511–535

    Article  Google Scholar 

  39. Mafune F et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104(39):9111–9117

    Article  Google Scholar 

  40. Mafuné F et al (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104(35):8333–8337

    Article  MATH  Google Scholar 

  41. Tsuji T et al (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202(1):80–85

    Article  ADS  MathSciNet  Google Scholar 

  42. Nichols W et al (2001) Large-scale production of nanocrystals by laser ablation of microparticles in a flowing aerosol. Appl Phys Lett 78(8):1128–1130

    Article  ADS  Google Scholar 

  43. Maisels A et al (2000) Synthesis of tailored composite nanoparticles in the gas phase. Appl Phys Lett 77(26):4431–4433

    Article  ADS  Google Scholar 

  44. Nasibulin AG et al (2002) Nanoparticle synthesis by copper (II) acetylacetonate vapor decomposition in the presence of oxygen. Aerosol Sci Technol 36(8):899–911

    Article  Google Scholar 

  45. Weber AP, Seipenbusch M, Kasper G (2001) Application of aerosol techniques to study the catalytic formation of methane on gasborne nickel nanoparticles. J Phys Chem A 105(39):8958–8963

    Article  Google Scholar 

  46. Keskinen H et al (2004) Generation of silver/palladium nanoparticles by liquid flame spray. J Mater Res 19(5):1544–1550

    Article  ADS  Google Scholar 

  47. Mädler L et al (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33(2):369–389

    Article  Google Scholar 

  48. Teng K, Vest R (1987) Liquid ink jet printing with MOD inks for hybrid microcircuits. IEEE Trans Components Hybrids Manufacturing Technol 10(4):545–549

    Article  Google Scholar 

  49. Teng K, Vest RW (1988) Metallization of solar cells with ink jet printing and silver metallo-organic inks. IEEE Trans Components Hybrids Manufacturing Technol 11(3):291–297

    Article  Google Scholar 

  50. Kydd PH, Wagner S, Gleskova H (2001) Material and method for printing high conductivity electrical conductors and other components on thin film transistor arrays. Google Patents

    Google Scholar 

  51. Jahn SF et al (2010) Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem Mater 22(10):3067–3071

    Article  Google Scholar 

  52. Dearden AL et al (2005) A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks. Macromol Rapid Commun 26(4):315–318

    Article  Google Scholar 

  53. Valeton JJ et al (2010) Room temperature preparation of conductive silver features using spin-coating and inkjet printing. J Mater Chem 20(3):543–546

    Article  Google Scholar 

  54. Grodzicki A et al (2005) Copper (I), silver (I) and gold (I) carboxylate complexes as precursors in chemical vapour deposition of thin metallic films. Coord Chem Rev 249(21):2232–2258

    Article  Google Scholar 

  55. Chen S-P et al (2012) Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures. ACS Appl Mater Interfaces 4(12):7064–7068

    Article  Google Scholar 

  56. Wu J-T et al (2011) Inkjet printing of low-temperature cured silver patterns by using AgNO3/1-dimethylamino-2-propanol inks on polymer substrates. J Phys Chem C 115(22):10940–10945

    Article  Google Scholar 

  57. Suganuma K et al (2006) Low temperature printing wiring with Ag salt pastes. In: 39th International symposium on microelectronics IMAPS, San Diego, pp 1050–1054

    Google Scholar 

  58. Nur H et al (2002) Ink-jet printing of gold conductive tracks. J Mater Sci Mater Electron 13(4):213–219

    Article  Google Scholar 

  59. Kawazome M et al (2006) Nano particles fine pitch wiring for printed electronics. Micromeritics 50:27–31

    Google Scholar 

  60. Johnson DR, Damarell WN, Kynaston-Pearson AW (2003) Depositing solid materials. World Patent WO2003049515 A1

    Google Scholar 

  61. Bidoki S et al (2007) Ink-jet fabrication of electronic components. J Micromech Microeng 17(5):967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Petrowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lesyuk, R., Petrowska, H., Kravchuk, O., Bobitski, Y., Kotlyarchuk, B. (2015). Nanomaterials for Ink-Jet Printed Electronics. In: Fesenko, O., Yatsenko, L. (eds) Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-18543-9_31

Download citation

Publish with us

Policies and ethics