Skip to main content

Abstract

Following refractive surgery, corneal wound-healing and inflammatory responses have important impact on the postoperative outcomes. It has been reported that SMILE induced less keratocyte apoptosis and inflammation compared with femtosecond-LASIK in a rabbit study. Similarly, we also found that the inflammatory and wound healing responses after SMILE was minimal and subsided after 1 week postoperatively. The postoperative complications resulting from impaired wound healing or inflammatory response, such as corneal haze or epithelial ingrowth, are reported to be low and were mainly associated with perioperative complications, such as difficult lenticule extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buratto L, Slade SG, Tavolato M (2012) Chap 4: LASIK: the evolution of refractive surgery. SLACK Incorporated, Thorofare, p 37

    Google Scholar 

  2. Sugar A (2002) Ultrafast (femtosecond) laser refractive surgery. Curr Opin Ophthalmol 13(4):246–249

    Article  PubMed  Google Scholar 

  3. Vogel A, Schweiger P, Freiser A et al (1990) Intraocular Nd:YAG laser surgery: light-tissue interactions, damage range, and reduction of collateral effects. IEEE J Quantum Electron 26:2240–2260

    Article  Google Scholar 

  4. Pepose JS (2008) Comparing femtosecond lasers. Cataract Refract Surg Today 45–51

    Google Scholar 

  5. Lubatschowski H (2008) Overview of commercially available femtosecond lasers in refractive surgery. J Refract Surg 24:S102–S107

    PubMed  Google Scholar 

  6. Santhiago MR, Wilson SE (2012) Cellular effects after laser in situ keratomileusis flap formation with femtosecond lasers: a review. Cornea 31(2):198–205

    Article  PubMed  Google Scholar 

  7. de Paula FH, Khairallah CG, Niziol LM, Musch DC, Shtein RM (2012) Diffuse lamellar keratitis after laser in situ keratomileusis with femtosecond laser flap creation. J Cataract Refract Surg 38:1014–1019

    Article  PubMed Central  PubMed  Google Scholar 

  8. Stonecipher KG, Dishler JG, Ignacio TS, Binder PS (2006) Transient light sensitivity after femtosecond laser flap creation: clinical findings and management. J Cataract Refract Surg 32:91–94

    Article  PubMed  Google Scholar 

  9. Azar DT, Chang JH, Han KY (2012) Wound healing after keratorefractive surgery: review of biological and optical considerations. Cornea 31(Suppl 1):S9–S19

    Article  PubMed Central  PubMed  Google Scholar 

  10. Dupps WJ Jr, Wilson SE (2006) Biomechanics and wound healing in the cornea. Exp Eye Res 83(4):709–720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vaddavalli PK, Hurmeric V, Wang J, Yoo SH (2012) Corneal haze following disruption of epithelial basement membrane on ultra-high-resolution OCT following femtosecond LASIK. J Refract Surg 28(1):72–74

    Article  PubMed  Google Scholar 

  12. Kanellopoulos AJ, Asimellis G (2014) Epithelial remodeling after femtosecond laser-assisted high myopic LASIK: comparison of stand-alone with LASIK combined with prophylactic high-fluence cross-linking. Cornea 33(5):463–469

    Article  PubMed  Google Scholar 

  13. Vaddavalli PK, Yoo SH (2011) Femtosecond laser in-situ keratomileusis flap configurations. Curr Opin Ophthalmol 22(4):245–250

    Article  PubMed  Google Scholar 

  14. Mohan RR, Mohan RR, Kim WJ, Wilson SE (2000) Modulation of TNF-alpha-induced apoptosis in corneal fibroblasts by transcription factor NF-kb. Invest Ophthalmol Vis Sci 41:1327–1336

    CAS  PubMed  Google Scholar 

  15. Tuominen IS, Tervo TM, Teppo AM et al (2001) Human tear fluid PDGF-BB, TNF-alpha and TGF-beta1 vs corneal haze and regeneration of corneal epithelium and subbasal nerve plexus after PRK. Exp Eye Res 72:631–641

    Article  CAS  PubMed  Google Scholar 

  16. Mohan RR, Mohan RR, Kim WJ et al (2000) Modulation of TNF-alpha induced apoptosis in corneal fibroblasts by transcription factor NF-kb. Invest Ophthalmol Vis Sci 41:1327–1334

    CAS  PubMed  Google Scholar 

  17. Mohan RR, Liang Q, Kim WJ, Helena MC, Baerveldt F, Wilson SE (1997) Apoptosis in the cornea: further characterization of Fas/Fas ligand system. Exp Eye Res 65:575–589

    Article  CAS  PubMed  Google Scholar 

  18. Jester JV, Moller-Pedersen T, Huang J, Sax CM, Kays WT, Cavangh HD, Petroll WM, Piatigorsky J (1999) The cellular basis of corneal transparency: evidence for ‘corneal crystallins’. J Cell Sci 112:613–622

    CAS  PubMed  Google Scholar 

  19. Jester JV, Petroll WM, Cavanagh HD (1999) Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog Retin Eye Res 18(3):311–356

    Article  CAS  PubMed  Google Scholar 

  20. Netto MV, Mohan RR, Sinha S, Sharma A, Dupps W, Wilson SE (2006) Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res 82:788–e797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Saika S (2004) TGF-beta signal transduction in corneal wound healing as a therapeutic target. Cornea 23:S25–S30

    Article  PubMed  Google Scholar 

  22. Torricelli AA, Wilson SE (2014) Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res 129:151–60, pii: S0014-4835(14)00263-2

    Article  CAS  PubMed  Google Scholar 

  23. Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJ, Richter E, Sakurai E, Newcomb MT, Kleinman ME, Caldwell RB, Lin Q, Ogura Y, Orecchia A, Samuelson DA, Agnew DW, St Leger J, Green WR, Mahasreshti PJ, Curiel DT, Kwan D, Marsh H, Ikeda S, Leiper LJ, Collinson JM, Bogdanovich S, Khurana TS, Shibuya M, Baldwin ME, Ferrara N, Gerber HP, De Falco S, Witta J, Baffi JZ, Raisler BJ, Ambati J (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443(7114):993–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12(4):242–249

    Article  CAS  PubMed  Google Scholar 

  25. Tombran-Tink J, Chader GG, Johnson LV (1991) PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res 53(3):411–414

    Article  CAS  PubMed  Google Scholar 

  26. Riau AK, Angunawela RI, Chaurasia SS, Lee WS, Tan DT, Mehta JS (2011) Early corneal wound healing and inflammatory responses after refractive lenticule extraction (ReLEx). Invest Ophthalmol Vis Sci 52(9):6213–6221

    Article  PubMed  Google Scholar 

  27. Nakamura M, Sato N, Chikama T, Hasegawa Y, Nishida T (1997) Fibronectin facilitates corneal epithelial wound healing in diabetic rats. Exp Eye Res 64(3):355–359

    Article  CAS  PubMed  Google Scholar 

  28. Dong Z, Zhou X, Wu J, Zhang Z, Li T, Zhou Z, Zhang S, Li G (2014) Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: comparison of corneal wound healing and inflammation. Br J Ophthalmol 98(2):263–269

    PubMed Central  PubMed  Google Scholar 

  29. Kim WJ, Mohan RR, Mohan RR, Wilson SE (1999) Effect of PDGF, IL-1 alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea. Invest Ophthalmol Vis Sci 40:1364–1372

    CAS  PubMed  Google Scholar 

  30. Zieske JD, Mason VS, Wasson ME et al (1994) Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction. Exp Eye Res 214:621–633

    CAS  Google Scholar 

  31. Ivarsen A, Asp S, Hjortdal J (2014) Safety and complications of more than 1500 small-incision lenticule extraction procedures. Ophthalmology 121:822–828

    Article  PubMed  Google Scholar 

  32. Dartt DA, Bex P, D’Amore P (2011) Chapter 2: Sturucture and function of the tear film, ocular adnexa, cornea and conjunctiva in health and pathogenesis in disease. In: Ocular periphery and disorders, p 266

    Google Scholar 

  33. Nishida T (2012) The role of fibronectin in corneal wound healing explored by a physician-scientist. Jpn J Ophthalmol 56(5):417–431

    Article  CAS  PubMed  Google Scholar 

  34. Tervo K, van Setten GB, Beuerman RW, Virtanen I, Tarkkanen A, Tervo T (1991) Expression of tenascin and cellular fibronectin in the rabbit cornea after anterior keratectomy. Immunohistochemical study of wound healing dynamics. Invest Ophthalmol Vis Sci 32(11):2912–2918

    CAS  PubMed  Google Scholar 

  35. Satoh M, Hirayoshi K, Yokota S, Hosokawa N, Nagata K (1996) Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol 133:469–483

    Article  CAS  PubMed  Google Scholar 

  36. Nagata K (1998) Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol 16(7):379–386

    Article  CAS  PubMed  Google Scholar 

  37. Møller-Pedersen T, Vogel M, Li HF, Petroll WM, Cavanagh HD, Jester JV (1997) Quantification of stro- mal thinning, epithelial thickness, and corneal haze after pho- torefractive keratectomy using in vivo confocal microscopy. Ophthalmology 104(3):360–368

    Article  PubMed  Google Scholar 

  38. Marchini G, Mastropasqua L, Pedrotti E, Nubile M, Ciancaglini M, Sbabo A (2006) Deep lamellar keratoplasty by intracorneal dissection: a prospective clinical and confocal microscopic study. Ophthalmology 113(8):1289–1300

    Article  PubMed  Google Scholar 

  39. Prasher P, Muftuoglu O, Bowman RW et al (2009) Tandem scanning confocal microscopy of cornea after descemet stripping automated endothelial keratoplasty. Eye Contact Lens 35(4):196–202

    Article  PubMed  Google Scholar 

  40. Hu MY, McCulley JP, Cavanagh HD, Bowman RW, Verity SM, Mootha VV, Petroll WM (2007) Comparison of the corneal response to laser in situ keratomileusis with flap creation using the FS15 and FS30 femtosecond lasers: clinical and confocal microscopy findings. J Cataract Refract Surg 33(4):673–681

    Article  PubMed  Google Scholar 

  41. Vestergaard A, Ivarsen AR, Asp S, Hjortdal JØ (2012) Small-incision lenticule extraction for moderate to high myopia: predictability, safety, and patient satisfaction. J Cataract Refract Surg 38(11):2003–2010

    Article  PubMed  Google Scholar 

  42. Liu YC, Pujara T, Mehta JS (2014) New instruments for lenticule extraction in small incision lenticule extraction (SMILE). PLoS One 9(12), e113774

    Article  PubMed Central  PubMed  Google Scholar 

  43. Farah SG, Azar DT, Gurdal C et al (1998) Laser in situ keratomileusis: literature review of a developing technique. J Cataract Refract Surg 24:989–1006

    Article  CAS  PubMed  Google Scholar 

  44. Hersh PS, Brint SF, Maloney RK et al (1998) Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia. Ophthalmology 105:1512–1523

    Article  CAS  PubMed  Google Scholar 

  45. Agca A, Ozgurhan EB, Yildirim Y, Cankaya KI, Guleryuz NB, Alkin Z, Ozkaya A, Demirok A, Yilmaz OF (2014) Corneal backscatter analysis by in vivo confocal microscopy: fellow eye comparison of small incision lenticule extraction and femtosecond laser-assisted LASIK. J Ophthalmol 2014:265012. doi:10.1155/2014/265012

    PubMed Central  PubMed  Google Scholar 

  46. Kamiya K, Shimizu K, Igarashi A, Kobashi H (2014) Visual and refractive outcomes of femtosecond lenticule extraction and small-incision lenticule extraction for myopia. Am J Ophthalmol 157(1):128–134.e2

    Article  PubMed  Google Scholar 

  47. Vetrugno M, Maino A, Quaranta GM, Cardia L (2001) The effect of early steroid treatment after PRK on clinical and refractive outcomes. Acta Ophthalmol Scand 79(1):23–27

    Article  CAS  PubMed  Google Scholar 

  48. Price FW Jr, Willes L, Price M, Lyng A, Ries J (2001) A prospective, randomized comparison of the use versus non-use of topical corticosteroids after laser in situ keratomileusis. Ophthalmology 108(7):1236–1244

    Article  PubMed  Google Scholar 

  49. Vestergaard AH, Grauslund J, Ivarsen AR, Hjortdal JØ (2014) Efficacy, safety, predictability, contrast sensitivity, and aberrations after femtosecond laser lenticule extraction. J Cataract Refract Surg 40(3):403–11

    Article  PubMed  Google Scholar 

  50. Sekundo W, Kunert KS, Blum M (2011) Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol 95(3):335–339

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jodhbir S. Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, YC., Tan, D.TH., Mehta, J.S. (2015). Wound Healing After ReLEx® Surgery. In: Sekundo, W. (eds) Small Incision Lenticule Extraction (SMILE). Springer, Cham. https://doi.org/10.1007/978-3-319-18530-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18530-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18529-3

  • Online ISBN: 978-3-319-18530-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics