Skip to main content

Long Term Measurement of Muon-Induced Neutrons at LSM

  • Chapter
  • First Online:
Production Yield of Muon-Induced Neutrons in Lead

Part of the book series: Springer Theses ((Springer Theses))

  • 370 Accesses

Abstract

As it was discussed in Sect. 3.7, the reliability of MC simulations of neutron production via atmospheric muons at underground sites has an uncertainty of up to a factor two. The actual agreement between simulation and measurement depends on the location of the measurement and the precision of the detector model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the following text, a muon telescope is defined as two muon counters in coincidence with each other and separated by a given distance.

  2. 2.

    Albeit the physical meaning is similar to the interaction length \(\lambda _\mathrm {int}\) defined by Eq. 3.5 in the context of shower development, the actual definition is slightly different, as \(\lambda _\mathrm {s}\) is not scaled by the medium’s density \(\rho \).

  3. 3.

    That is, no orbital angular momentum is transferred from the incident neutron to the compound nucleus [5].

  4. 4.

    Position 4 in [70, table2]. The neutron counter was installed after the \(\mathrm {^3He}\) measurement.

  5. 5.

    This measurement was analysed four times, resulting in different values for the fast neutron (\(E_\mathrm {n} {}>{1} \,\mathrm{MeV}\)) flux: \({4 \times 10^{-6}}{\mathrm{cm}^{-2} \mathrm{s}^{-1}}\) [15], \({1.6 \times 10^{-6}}{\mathrm{cm}^{-2} \mathrm{s}^{-1}}\) [14], \({1.1 \times 10^{-6}}{\mathrm{cm}^{-2} \mathrm{s}^{-1}}\) [53], \({1.06 \times 10^{-6}}{\mathrm{cm}^{-2} \mathrm{s}^{-1}}\) [20].

  6. 6.

    This is equivalent to a perpendicular column density of \(X = {113.42}\,{\mathrm{g}\,\mathrm{cm}^{-2}}\).

  7. 7.

    Steel of type S 235 JR, standardized in DIN EN 10 025.

  8. 8.

    1,2,4-trimethylbenzene.

  9. 9.

    BC-525 (Saint-Gobain Crystals, 104 Route de Larchant, BP 521, 77794 Nemours Cedex, France).

  10. 10.

    The chemical formulation of an organic liquid scintillator loaded with gadolinium is complicated: The metal must form an organo-metallic complex via ligands (complexing agents) like carboxylic acids. Carboxylic acids with long carbon chains are more organic-like and thus their organo-complex are easier to solve in the solvent. However, increasing the weight percent of the organo-metallic complex in this way reduces the weight percentage of the organic solvent that determines the light yield [81]. According to [81, p. 331] the best compromise between an easy solubility of gadolinium in pseudocumene on one hand and a high light yield on the other hand is 2-methylvaleric acid. Also, care must be taken to stabilize the scintillator: The synthesis of the organo-metallic complex from gadolinium oxide, opposite to the synthesis from gadolinium nitrate, increase the stability against solid-liquid phase separation when the scintillator is exposed to air [66, 81]. According to [81, p. 330] the oxidation of the organic liquid by the used \({\mathrm{Gd(NO}_{3})_{3}}\) likely caused the degeneracy of the scintillator in the CHOOZ experiment.

  11. 11.

    Gadolinium 2-ethylhexanoate \({[\mathrm{Gd(CH}_{3}\mathrm{(CH}_{2})_{3}\mathrm{CH(C}_{2}\mathrm{H}_{5})\mathrm{CO}_{2})_{3} \cdot \mathrm{xH}_{2}\mathrm{O}]}\), synthesised from gadolinium oxide \({\mathrm{Gd}_{2}\mathrm{O}_{3}}\).

  12. 12.

    The chemical formulation used in [66] ([81]) is: 0.1 % w/w (0.2 % w/w) of gadolinium complexed by carboxylic acid, solved in pseudocumene, diluted by 60 % v/v of mineral oil (80 % v/v of dodecane).

  13. 13.

    It is also common to bubble liquid scintillators with nitrogen, but by gadolinium loaded liquid scintillators it can cause the precipitation of the gadolinium compound out of the solution [66, p. 394].

  14. 14.

    Hamamatsu Photomultiplier Tube R5912 (HAMAMATSU PHOTONICS K.K., Electoron Tube centre 314-5, Shimokanzo, Toyooka-village, Iwata-gun, Shizuoka-ken, 438-0193, Japan).

  15. 15.

    LeCroy 1440, (LeCroy Research Systems SA, Avenue Louis-Casa 81, case postale 43, 1216 Cointrin-Geneva, Switzerland), out of production.

  16. 16.

    Modules 1 to 22 and 25 to 48 constitute the actual muon veto, the modules 50 and 51 were the muon telescope; no modules 23, 24, and 49 exist.

  17. 17.

    BC-412 (Saint-Gobain Crystals).

  18. 18.

    Photonis XP2262 (PHOTONIS France S.A.S, Avenue Roger Roncier, 19100 Brive La Gaillarde, France).

  19. 19.

    The measurement was performed by a student during a summer internship.

  20. 20.

    RLT420-3-30 (Roithner Lasertechnik, Schönbrunner Straße 7, 1040 Vienna, Austria).

  21. 21.

    Modules 7, 8, 15, and 16.

  22. 22.

    Standardized in ANSI/IEEE 1014-1987, for an overview see e.g. [78].

  23. 23.

    Standardized in ANSI/IEEE 583-1982, for an overview see e.g. [30].

  24. 24.

    UEV 6023 9U bin, UEL 6020 LX-Fan tray, Modulare VHF switcher Stromversorgung UEP 6021 (wiener—Plein & Baus GmbH, Müllersbaum 20, 51399 Burscheid, Germany).

  25. 25.

    CCA-2 Type A-2 Crate Controller (Hytec Electronics Ltd., 5 Cradock Road, Reading, Berkshire, RG2 0JT, England).

  26. 26.

    CBD 8210 CAMAC Branch Driver (Creative Electronic Systems, 70, Route du Pont-Butin, P.O. Box 107, CH-1213 PETIT-LANCY 1, Switzerland).

  27. 27.

    PCI to VME Interface (wiener).

  28. 28.

    CAMAC Model 4434—32-Channel, 24-Bit Scaler (LeCroy), out of production.

  29. 29.

    Development of the Institute for Data Processing and Electronics (IPE) at the KIT, for a detailed description see [24].

  30. 30.

    Model 4413—16-Channel CAMAC Discriminator (LeCroy), out of production.

  31. 31.

    Mod.V512—8 Ch 4 Fold Programmable Logic Unit (CAEN).

  32. 32.

    For the definition of the signal levels used in Nuclear Instrumentation Modules see [76].

  33. 33.

    Development of the IPE at the KIT, for a detailed description see [24].

  34. 34.

    Mod.V767—128 Ch. General Purpose Multihit TDC (CAEN S.p.A., Via Vetraia, 11, 55049—Viareggio, Italy).

  35. 35.

    Often the TDC units are called TDC channels, this naming is rejected in this work to prevent confusion with the input channels of the TDC.

  36. 36.

    Mod.V792N—32 Ch QDCs (CAEN).

  37. 37.

    Again, the naming ADC channels is rejected to prevent confusion with the input channels of the ADC.

  38. 38.

    Mod. V830 series—32 Channel Latching Scalers (CAEN).

  39. 39.

    Mod.V895B—16 Channel Leading Edge Discriminators (CAEN).

  40. 40.

    As an internal test pulser is used, the veto signals (green) shown in Fig. 4.8a have obviously no effect on the signals from the first trigger level (red).

  41. 41.

    Model 1176—16 Channel VME TDC (LeCroy), out of production.

  42. 42.

    Model 1182—VME Multiple Input Charge ADC (LeCroy), out of production.

  43. 43.

    Mod.VX1720—8 Channel 12 bit 250MS/s Digitizer (CAEN).

  44. 44.

    Given in samples (S) per second, i.e. S \(\mathrm {s}^{-1}\).

  45. 45.

    Standardized in IEEE 1003.1c-1995.

  46. 46.

    Based on the single muon flux of \({5.47(10) \times 10^{-5}}{\mathrm{m}^{-2} \mathrm{s}^{-1}}\) [6] and a perpendicular detector cross section of 2 m\(^{2}\).

  47. 47.

    For example, if a sequence of three hits occurs at times 10, 200 and 220 ns the last two hits are removed, even if the third hit is separated from the first by more than 200 ns.

References

  1. Araújo H et al (2008) Measurements of neutrons produced by high-energy muons at the Boulby underground laboratory. Astropart Phys 29(6):471–481. doi:10.1016/j.astropartphys.2008.05.004

  2. Ayunutdinov VM et al [Pierre Auger Collaboration] (2003) The Pierre Auger surface detector LED flashers and their use for monitoring and calibration. In: Kajita T et al (eds) Proceedings of the 28th international cosmic ray conference, Trukuba, Japan, 31 July–7 Aug 2003. Frontiers science series, vol 41. Universal Academy Press, Tokyo, pp 825–828. ADS: 2003ICRC....2..825A

    Google Scholar 

  3. Bäcklin A et al (1982) Levels in 156Gd studied in the (n, \(\gamma \)) reaction. Nucl Phys A 380(2):189–260. doi:10.1016/0375-9474(82)90104-X. As cited in Ref. [75]

  4. Banerjee K et al (2007) Characteristics of Gd-loaded liquid scintillators BC521 and BC525. Nucl Instrum Methods Phys Res Sect A 580(3):1383–1389. doi:10.1016/j.nima.2007.06.019

    Article  ADS  Google Scholar 

  5. Beckurts KH, Wirtz K (1964) Neutron physics. Springer, Berlin

    Google Scholar 

  6. Berger C et al [Fréjus Collaboration] (1989) Experimental study of muon bundles observed in the Fréjus detector. Phys Rev D 40(7):2163–2171. doi:10.1103/PhysRevD.40.2163

  7. Berger MJ et al (2012) XCOM: Photon cross sections database 1.5. Scientific report NBSIR 87–3597. National Institute of Standards and Technology. http://www.nist.gov/pml/data/xcom/index.cfm. NIST homepage > physical reference data > X-ray and gamma-ray data >. XCOM: Photon Cross Sections Database

  8. Bettini A (2011) Underground laboratories. Nucl Instrum Methods Phys Res Sect A 626–627(Suppl):S64–S68. doi:10.1016/j.nima.2010.05.017

    Article  Google Scholar 

  9. Bezrukov LB et al (1973) Investigation of the depth-intensity curve of the nuclear events induced by cosmic-ray muons (trans: Adashko JG). Sov J Nucl Phys 17(1):51–53. Orig. Pub. as Yad Fiz 17: 98–103 [in Russian]

    Google Scholar 

  10. Birks JB (1964) The theory and practice of scintillation counting. International series of monographs on electronics and instrumentation, vol 27. Pergamon Press, Oxford

    Google Scholar 

  11. Bohr N (1936) Neutron capture and nuclear constitution. Nature 137(3461):344–348. doi:10.1038/137344a0

  12. Bowden N, Sweany M, Dazeley S (2012) A note on neutron capture correlation signals, backgrounds, and efficiencies. Nucl Instrum Methods Phys Res Sect A 693:209–214. doi:10.1016/j.nima.2012.07.005

    Article  ADS  Google Scholar 

  13. Breit G, Wigner E (1936) Capture of slow neutrons. Phys Rev (2nd Ser) 49(7):519–531. doi:10.1103/PhysRev.49.519

  14. Chardin G, Gerbier G (2003) Neutron background studies for the EDELWEISS WIMP search. In: Spooner N, Kudryavtsev V (eds) Proceedings of 4th international workshop on the identification of dark matter, IDM 2002, New York, UK, 2–6 Sept 2002. World Scientific, Singapore, pp 470–476. doi:10.1142/9789812791313_fmatter. As cited in Refs. [20, 53]

  15. Chazal V et al (1998) Neutron background measurements in the underground laboratory of Modane. Astropart Phys 9(2):163–172. doi:10.1016/S0927-6505(98)00012-7

    Article  MathSciNet  ADS  Google Scholar 

  16. Cowan G (1998) Statistical data analysis. Clarendon Press, Oxford. http://www.gbv.de/dms/goettingen/241026571.pdf

  17. Davisson CM, Evans RD (1952) Gamma-ray absorption coefficients. Rev Mod Phys 24(2):79–107. doi:10.1103/RevModPhys.24.79

    Article  ADS  Google Scholar 

  18. Eitel K [For the EDELWEISS Collaboration] (2012) Measurements of neutron fluxes in the LSM underground laboratory. J Phys Conf Ser 375(1):012016. doi:10.1088/1742-6596/375/1/012016

  19. Feldman GJ, Cousins RD (1998) Unified approach to the classical statistical analysis of small signals. Phys Rev D 57(7):3873–3889. doi:10.1103/PhysRevD.57.3873

    Article  ADS  Google Scholar 

  20. Fiorucci S et al [EDELWEISS Collaboration] (2007) Identification of backgrounds in the EDELWEISS-I dark matter search experiment. Astropart Phys 28(1):143–153. doi:10.1016/j.astropartphys.2007.05.003

  21. Garny S et al (2009) GEANT4 transport calculations for neutrons and photons below 15 MeV. IEEE Trans Nucl Sci 56(4):2392–2396. doi:10.1109/TNS.2023904

  22. Groom DE, Mokhov NV, Striganov SI (2001) Muon stopping power and range tables 10 MeV-100 TeV. At Data Nucl Data Tables 78(2):183–356. doi:10.1006/adnd.2001.0861

    Article  ADS  Google Scholar 

  23. Grupen C, Shwartz BA (2008) Particle detectors, 2nd edn. Cambridge monographs on particle physics, nuclear physics, and cosmology, vol 26. Cambridge University Press, Cambridge

    Google Scholar 

  24. Habermehl F (2004) Entwicklung der Datenaufnahme und Tests der Vetomodule für das EDELWEISS II \(\mu \)-Vetozählersystem [in German]. Master’s thesis, Universität Karlsruhe (TH)

    Google Scholar 

  25. Hamamatsu Photonics (2006) In: Hakamata T et al (eds) Photomultiplier tubes: basics and applications, 3rd edn. Hamamatsu Photonics KK Electron Tube Division, Hamamatsu

    Google Scholar 

  26. Hennings-Yeomans R, Akerib D (2007) A neutron multiplicity meter for deep underground muon-induced high-energy neutron measurements. Nucl Instrum Methods Phys Res Sect A 574(1):89–97. doi:10.1016/j.nima.2007.01.137

    Article  ADS  Google Scholar 

  27. Horn OM (2007) Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for dark matter search. Scientific report FZKA 7391. Forschungszentrum Karlsruhe. http://bibliothek.fzk.de/zb/berichte/FZKA7391.pdf. Orig. Pub. as PhD Disseration, Universität Karlsruhe (TH). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007402

  28. Hubbell JH, Seltzer SM (2004) Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. Scientific report NISTIR 5632. National Institute of Standards and Technology. http://www.nist.gov/pml/data/xraycoef/index.cfm. NIST homepage > PML > physical reference data > X-ray mass attenuation coefficients

  29. Hubbell J (1982) Photon mass attenuation and energy-absorption coefficients. Int J Appl Radiat Isot 33(11):1269–1290. doi:10.1016/0020-708X(82)90248-4

  30. Institute of Electrical and Electronics Engineers (1976) CAMAC instrumentation and interface standards: modular instrumentation and digital interface system; serial high way interface system; parallel highway interface system; block transfers in CAMAC systems. Institute of Electrical and Electronics Engineers/Wiley-Interscience, New York

    Google Scholar 

  31. International Atomic Energy Agency (ed) (2007) Database of prompt gamma rays from slow neutron capture for elemental analysis. International Atomic Energy Agency, Vienna

    Google Scholar 

  32. International Atomic Energy Agency (2012) Nuclear data services: evaluated nuclear data files. http://www-nds.iaea.org/exfor/endf.htm

  33. Jahnke U et al (2003) A combination of two 4\(\pi \) detectors for neutrons and charged particles: part I. The Berlin neutron ball-a neutron multiplicity meter and a reaction detector. Nucl Instrum Methods Phys Res Sect A 508(3):295–314. doi:10.1016/S0168-9002(03)01652-8

    Article  ADS  Google Scholar 

  34. Jokisch S (2009) Neutrondetctor-Logical card version 2.0. Internal manual for the EDELWEISS collaboration

    Google Scholar 

  35. Jokisch S (2009) Time-base for the muon-veto electronic system version 1.0. Internal manual for the EDELWEISS collaboration

    Google Scholar 

  36. Jokisch S (2010) Neutrondetector-VME-LED-Module version 1.0. Internal manual for the EDELWEISS collaboration

    Google Scholar 

  37. Kapustinsky J et al (1985) A fast timing light pulser for scintillation detectors. Nucl Instrum Methods Phys Res Sect A 241(2–3):612–613. doi:10.1016/0168-9002(85)90622-9

    Article  ADS  Google Scholar 

  38. Kleifges M (2012) LED-controller of the SED of the Pierre Auger observatory. E-mail message to author, September 11

    Google Scholar 

  39. Kluck H (2007) Aufbau und Test eines Prototyp-Neutronendetektors für das EDELWEISS Experiment [in German]. Master’s thesis, Universität Karlsruhe (TH)

    Google Scholar 

  40. Kozlov VY (2013) Analysis of neutron counter data and dead time. E-mail messages to author, 1–9 Oct 2012 and 3 July 2013

    Google Scholar 

  41. Kozlov VY (2012) Precipitation of gadolinium out of the liquid scintillator. E-mail message to author, 08 Dec 2012

    Google Scholar 

  42. Kozlov VY (2012) Time series of neutron capture time. E-mail message to author, 11 Sept 2012

    Google Scholar 

  43. Kozlov VY [For the EDELWEISS Collaboration] (2008) Studies of the muon-induced neutron background in LSM: detector concept and status of the installation. In: Identification of dark matter 2008, Stockholm, Sweden, 18–22 Aug. Proceedings of science IDM2008. SISSA, Trieste, p 86. arXiv:0902.4858v1 [astro-ph.IM]

  44. Kozlov VY et al (2010) A detection system to measure muon-induced neutrons for direct dark matter searches. Astropart Phys 34(2):97–105. doi:10.1016/j.astropartphys.2010.06.001. arXiv:1006.3098 [astro-ph.IM]

  45. Kudryavtsev V, Pandola L, Tomasello V (2008) Neutron- and muon-induced background in underground physics experiments. Eur Phys J A 36(2):171–180. doi:10.1140/epja/i2007-10539-6

    Article  ADS  Google Scholar 

  46. Kudryavtsev V [For the LVD Collaboration] (1999) Measurement of the neutron flux produced by cosmic-ray muons with LVD at Gran Sasso. In: Kieda D, Salamon M, Dingus B (eds) Proceedings of the 26th international cosmic ray conference, Salt Lake City, UT, USA, 17–25 Aug 1999, vol 2. University of Utah/American Institute of Physics, Salt Lake City, pp 44–48. hep-ex/9905047

  47. Laible F (2012) Relative decrease of the transparency of the liquid scintillator. E-mail message to author, 11 Sept 2012

    Google Scholar 

  48. Laible F (2012) Untersuchung der Langzeitstabilität eines Flüssigszintillators im Untergrundlabor von Modane [in German]. Bachelor’s thesis, Karlsruher Institut für Technologie (KIT)

    Google Scholar 

  49. Lane A, Lynn J (1960) Anomalous radiative capture in the neutron resonance region: analysis of the experimental data on electric dipole transitions. Nucl Phys 17:586–608. doi:10.1016/0029-5582(60)90147-4

    Article  Google Scholar 

  50. Lane A, Lynn J (1960) Theory of radiative capture in the resonance region. Nucl Phys 17:563–585. doi:10.1016/0029-5582(60)90146-2

    Article  Google Scholar 

  51. Launay S Time-base for the muon-veto electronics system—User manual. Internal manual for the EDELWEISS collaboration

    Google Scholar 

  52. Leipunskii OI, Novozhilov BV, Sakharov VN (1965) The propagation of gamma quanta in matter. International series of monographs on nuclear energy-Division X: reactor design physics, vol 6. Pergamon Press, Oxford

    Google Scholar 

  53. Lemrani R, Gerbier G [For the EDELWEISS Collaboration] (2006) Update of neutron studies in EDELWEISS. J Phys Conf Ser 39(1):145. doi:10.1088/1742-6596/39/1/033

  54. Lemrani R et al (2006) Low energy neutron propagation in MCNPX and GEANT4. Nucl Instrum Methods Phys Res Sect A 560(2):454–459. doi:10.1016/j.nima.2005.12.238. hep-ex/0601030

  55. Lubsandorzhiev B et al (2006) Photoelectron backscattering in vacuum phototubes. In: Proceedings of the 4th international conference on new developments in photodetection-BEAUNE 2005, special issue. Nucl Instrum Methods Phys Res Sect A 567(1):12–16. doi:10.1016/j.nima.2006.05.047

  56. Mei D-M, Zhang C, Hime A (2009) Evaluation of induced neutrons as a background for dark matter experiments. Nucl Instrum Methods Phys Res Sect A 606(3):651–660. doi:10.1016/j.nima.2009.04.032

    Article  ADS  Google Scholar 

  57. Mei D, Hime A (2006) Muon-induced background study for underground laboratories. Phys Rev D 73:053004. doi:10.1103/PhysRevD.73.053004. arXiv:astro-ph/0512125

  58. Miyake S, Narasimham V, Ramana Murthy P (1964) Cosmic-ray intensity measurements deep undergound at depths of (800\(\div \)8400) m w.e. Nuovo Cim 32(6):1505–1523. doi:10.1007/BF02732788

  59. Mughabghab SF (2006) Atlas of neutron resonances: resonance parameters and thermal cross sections Z=1-100, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  60. Mughabghab S (1979) Verification of the Lane-Lynn theory of direct neutron capture. Phys Lett B 81(2):93–97. doi:10.1016/0370-2693(79)90496-9

    Article  ADS  Google Scholar 

  61. Oehler C (1996) Untersuchung der Eigenschaften hemisphärischer 8-inch Photomultiplier für einen großvolumigen Wasser-Čerenkov-Detektor [in German]. Scientific report FZKA 5695. Forschungszentrum Karlsruhe. Orig. pub. as master’s thesis, Universität Karlsruhe (TH) [in German]

    Google Scholar 

  62. Ohsumi H et al (2002) Gamma-ray flux in the Fréjus underground laboratory measured with NaI detector. Nucl Instrum Methods Phys Res Sect A 482(3):832–839. doi:10.1016/S0168-9002(01)01866-6

    Article  ADS  Google Scholar 

  63. O’Neill D (2001) PMT pulse digitization simulations for Hall D. http://argus.phys.uregina.ca/gluex/DocDB/0004/000425/001/O’Neill_PMT.pdf

  64. Parker J et al (1968) Monte Carlo studies of scintillator efficiencies and scatter corrections for (n,2n) cross section measurements. Nucl Instrum Methods 60(1):7–23. doi:10.1016/0029-554X(68)90083-9

    Article  ADS  Google Scholar 

  65. Photonis (2002) In: Flyckt S-O, Marmonier C (eds) Photomultiplier tubes: principles and application, Rev edition. Photonis, Brive

    Google Scholar 

  66. Piepke AG, Moser SW, Novikov VM (1999) Development of a Gd loaded liquid scintillator for electron anti-neutrino spectroscopy. Nucl Instrum Methods Phys Res Sect A 432(2–3):392–398. doi:10.1016/S0168-9002(99)00530-6. arXiv:nucl-ex/9904002v1

  67. Press WH et al (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  68. Reichenbacher J (1998) Untersuchung der optischen Eigenschaften grossflächiger Plastikszintillatoren für den KARMEN-Upgrade [in German]. Scientific report FZKA 6202. Forschungszentrum Karlsruhe. Orig. pub. as master’s thesis, Universität Karlsruhe (TH) [in German]

    Google Scholar 

  69. Roithner Lasertechnik. RLT420-3-30-Violet LED Lamp. Roithner Lasertechnik, Vienna

    Google Scholar 

  70. Rozov S et al (2010) Monitoring of the thermal neutron flux in the LSM underground laboratory. arXiv:1001.4383v1 [astro-ph.IM]

  71. Saint-Gobain Crystals (2005) BC400, BC-404, BC-408, BC-412, BC-416: premium plastic scintillators. Saint-Gobain Crystals, Nemours

    Google Scholar 

  72. Schmidt B et al [EDELWEISS collaboration] (2013) Muon-induced background in the EDELWEISS dark matter search. Astropart Phys 44:28–39. doi:10.1016/j.astropartphys.2013.01.014. arXiv:1302.7112 [astro-ph.CO]

  73. Sukhoruchkin SI et al (2009) Introduction. In: Schopper H (ed) Landolt-Börnstein-group I elementary particles, nuclei and atoms-numerical data and functional relationships in science and technology, vol I/24. Neutron resonance parameters, Chap 1. Springer, Berlin. doi:10.1007/978-3-540-87866-7_1

  74. Tomasello V, Kudryavtsev V, Robinson M (2008) Calculation of neutron background for underground experiments. Nucl Instrum Methods Phys Res Sect A 595(2):431–438. doi:10.1016/j.nima.2008.07.071

    Article  ADS  Google Scholar 

  75. Trzciński A et al (1999) A monte-carlo code for neutron efficiency calculations for large volume Gd-loaded liquid scintillation detectors. J Neutron Res 8(2):85–117. doi:10.1080/10238169908200048

    Article  Google Scholar 

  76. US NIM Committee (1990) Standard NIM instrumentation system. Tech rep DOE/ER-0457T. US Department of Energy-Office of Energy Research. http://www.osti.gov/energycitations/servlets/purl/7120327-MV8wop/7120327.pdf

  77. Verhoeven JW (1996) Glossary of terms used in photochemistry: IUPAC Recommendations 1996. Pure Appl Chem 68(12):2223–2286. doi:10.1351/pac199668122223

    Article  Google Scholar 

  78. VMEbus International Trade Association. VME Technology FAQ. http://www.vita.com/home/Learn/vmefaq/vmefaq.html. VITA homepage > Learn > Frequently Asked Questions (FAQ) > VMEbus

  79. Wieser ME (2006) Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem 78(11):2051–2066. doi:10.1351/pac200678112051

    Article  Google Scholar 

  80. Wilson WB et al (1999) SOURCES 4A: A code for calculating (\(\alpha \), n), spontaneous fission, and delayed neutron sources and spectra. Tech rep LA-13639-MS. Los Alamos National Laboratory. https://www.fas.org/sgp/othergov/doe/lanl/docs1/00460139.pdf

  81. Yeh M, Garnov A, Hahn R (2007) Gadolinium-loaded liquid scintillator for highprecision measurements of antineutrino oscillations and the mixing angle, \(\theta _{13}\). Nucl Instrum Methods Phys Res Sect A 578(1):329–339. doi:10.1016/j.nima.2007.03.029

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Kluck .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kluck, H. (2015). Long Term Measurement of Muon-Induced Neutrons at LSM. In: Production Yield of Muon-Induced Neutrons in Lead. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18527-9_4

Download citation

Publish with us

Policies and ethics